

Course Outline

Functions of Web Browser

Type of Browser

Web Server

Web Directories

Websites

 Static

 Dynamic

Search Engine

Web Page Program Development

 Roles in Web site development team

 Web Development Scope

Scripting languages

 JavaScript

 PHP

Web hosting

 Web Hosting Services

 Types of web Hosting

Cookie

 Types of Cookies

 Uses of Cookies

 Browser Setting for Cookies

 1.11.4 Privacy Concerns about Cookies

Web 2.0

Web 3.0

HTML5 INTRODUCTION

 HTML Editors

 HTML Basic

HTML Elements

HTML Attributes

HTML Headings

HTML Paragraphs

HTML Styles

HTML Formatting

HTML Quotations

HTML Comments

HTML Colors
HTML CSS

HTML Links
HTML Images

HTML Favicon

HTML Tables

HTML Lists
HTML Block & Inline

HTML Classes

HTML Id

HTML Iframes
HTML Head

HTML Layout

HTML Forms

CSS INTRODUCTION

3.1 CSS Syntax

3.2 CSS Selectors

3.3 CSS How To Use

3.4 CSS Comments

3.5 CSS Colors

3.6 CSS Backgrounds

3.7 CSS Borders

3.8 CSS Margins

3.9 CSS Padding

3.10 CSS Height/Width

3.11 CSS Box Model

3.12 CSS Outline

3.13 CSS Text

3.14 CSS Fonts

3.15 CSS Icons

3.16 CSS Links

3.17 CSS Lists

3.18 CSS Tables

3.19 CSS Display

3.20 CSS Max-width

3.21 CSS Position

3.22 CSS Z-index

3.23 CSS Overflow

3.24 CSS Float

3.25 CSS Inline-block

3.26 CSS Align

3.27 CSS Opacity

3.28 CSS Navigation Bar

3.29 CSS Dropdowns

3.30 CSS Attribute Selectors

JAVASCRIPT

4.1 JS Introduction

4.2 JS Output

4.3 JS Statements

4.4 JS Structure

 4.5 JS Comments

4.6 JS Variables

4.7 JS Let

4.8 JS Const

4.9 JS Operators

4.10 Functions

 4.10.1 User define function

4.10.2 Built-in Function (ABS(), Rand(), Max(), Min(), eval(),

parseInt(), parseFloat())

4.11 JS Arrays

4.12 JS If Else

4.13 JS Switch
4.14 JS For Loop

4.15 JS While Loop

Section 1

Website

Development

introDuction

Lectured By : Sardar Azeem

What is Internet?
The Internet is a global network of interconnected computers and devices that allows
users to access and share information and devices, allowing them to communicate and
exchange data. It enables users to access a wide range of services, such as websites,
emails, social media, online applications, and cloud storage. Through standardized
communication protocols, the Internet facilitates the sharing of information, resources
and media across vast distances, making it an essential tool for education, business,
entertainment and personal communication worldwide.

Key Features of the Internet:

1. Decentralized Network – No single entity owns or controls the entire Internet.

2. Uses TCP/IP Protocols – Ensures reliable data transmission between devices.

3. World Wide Web (WWW) – A major part of the Internet, consisting of websites and
web apps.

4. Email, social media, Streaming, Cloud Services – Common uses of the Internet.

5. Accessible via ISPs – Users connect through Internet Service Providers (e.g.,
Comcast, AT&T).

The Internet has revolutionized modern life, making information and services available
instantly worldwide

History of the Internet

The Internet came in the year 1960 with the creation of the first working model
called ARPANET (Advanced Research Projects Agency). It allowed multiple computers
to work on a single network which was their biggest achievement at that time. ARPANET
uses packet switching to communicate multiple computer systems under a single
network. In October 1969, using ARPANET first message was transferred from one
computer to another. After that technology continues to grow.

How is the Internet Set Up?

The internet is set up with the help of physical optical fiber data transmission cables or
copper wires and various other networking mediums like LAN, WAN, MAN, etc. For
accessing the Internet even, the 2G, 3G and 4G services and the Wifi require these
physical cable setups to access the Internet.

The ICANN (Internet Corporation for Assigned Names and Numbers), based in the USA,
manages critical aspects of the Internet, including IP addresses, the Domain Name
System (DNS) and protocols that ensure the smooth functioning and global connectivity
of the Internet.

How Does the Internet Work?

• The actual working of the internet takes place with the help of clients and servers.

• Here, the client is a laptop that is directly connected to the internet.

• Servers are computers connected indirectly to the Internet and they store all
the websites in those large computers.

• These servers are connected to the internet with the help of ISP (Internet Service
Providers) and are identified with an IP address.

• Each website has its Domain Name, as it is difficult for a person to remember
long numbers or strings (IP addresses).

• When you search for a domain name in the browser’s search bar, the request is
sent to the server.

• The server tries to find the IP address from the domain name because it cannot
understand the domain name directly.

• After getting the IP address, the server will try to search the IP address of the
domain name in a huge phone directory, known in networking as a DNS server
(Domain Name Server).

• Example: Just like if we have the name of a person, we can easily find
their Aadhaar number from a long directory — it works the same way with domain
names and IP addresses.

• Once the IP address is found, the browser will pass on the request to
the respective server.

• The server then processes the request and displays the content of the website
that the client wants.

• If you are using a wireless medium of internet like 3G, 4G, or other mobile data,
then data flows from optical cables to towers. From towers, signals reach your
cell phones and PCs through electromagnetic waves.

• If you are using routers, then Optical fiber connects to your router and
converts light-induced signals to electrical signals. Using ethernet cables, the
internet reaches your computers, delivering the required information.

Difference Between World Wide Web and the Internet

World Wide Web Internet

All the web pages and web documents
are stored there on the World wide web
and to find all that stuff you will have a
specific URL for each website.

The Internet is a global network of
computers that is accessed by the World
wide web.

The world wide web is a service. The Internet is an infrastructure.

The world wide web is a subset of the
Internet.

The Internet is the superset of the world
wide web.

The world wide web is software-
oriented.

The Internet is hardware-oriented.

The world wide web uses HTTP. The Internet uses IP Addresses.

The world wide web can be considered
as a book from the different topics inside
a Library.

The Internet can be considered a Library.

Examples: Websites, e-commerce, blogs Example: The network connecting all online
services

Uses of the Internet

• E-Commerce & Online Shopping: Platforms
like Amazon, Flipkart and Myntra allow users to buy products with ease,
providing a seamless shopping experience, home delivery and multiple payment
options.

• Digital Payments & Cashless Transactions: UPI-based
platforms (e.g., Paytm, Google Pay) enable users to make instant payments,
bank transfers and bill payments, driving the growth of the cashless economy.

• Remote Education & Online Learning: Educational platforms like Coursera, Khan
Academy and YouTube offer a wide range of online courses, making quality
education accessible to people worldwide.

• Social Connectivity: Social media
apps like Facebook, Instagram and LinkedIn allow people to stay connected,
share content, network professionally and create online communities.

• Streaming & Entertainment: Services like Netflix, Spotify and YouTube provide
on-demand access to movies, music, TV shows and online gaming, offering
endless entertainment options.

• Telemedicine & Health Services: Online consultations, fitness apps and digital
health tracking allow individuals to monitor their well-being and consult
healthcare professionals remotely.

• Online Banking & Financial Services: Internet banking enables users to transfer
funds, pay bills and manage finances without visiting a
bank. Cryptocurrencies are also becoming more mainstream through online
platforms.

• News & Information Access: The Internet serves as a hub for real-time news,
articles, blogs and live updates from around the world, making it easier to stay
informed on global events.

• Travel Planning & Navigation: Travel websites and navigation apps like Google
Maps and Waze help users plan trips, book accommodations and navigate
through traffic efficiently.

• Remote Work & Collaboration: Cloud-based tools such as Google
Drive, Slack and Zoom enable teams to collaborate, store files and work
remotely, improving productivity and communication across distances.

Security and the Internet

Very huge amount of data is managed across the Internet almost the time, which leads
to the risk of data breaching and many other security issues. Both Hackers and
Crackers can lead to disrupting the network and can steal important information like
Login Credentials, Banking Credentials, etc.

Steps to Protect the Online Privacy

• Install Antivirus or Antimalware.

• Create random and difficult passwords, so that it becomes difficult to guess.

• Use a private browsing window or VPN for using the Internet.

• Try to use HTTPS only for better protection.

• Try to make your Social Media Account Private.

• If you are not using any application, which requires GPS, then you can turn GPS
off.

• Do not simply close the tab, first log out from that account, then close the tab.

• Try to avoid accessing public WIFI or hotspots.

• Try to avoid opening or downloading content from unknown sources.

There is an element of the Internet called the Dark Web, which is not accessible from
standard browsers. To keep safe our data, we can use Tor and I2P, which helps in
keeping our data anonymous, that helps in protecting user security and helps in reducing
cybercrime.

Social Impact of the Internet

The social impact of the Internet can be seen in both ways. Some say it has a positive
impact as it helps in gaining civic engagement, etc. whereas some say it has a negative
impact as it increased the risk of getting fooled by someone over the internet, getting
withdrawal from society, etc.

Whatever the impact of social media, one thing is that it changed the way of connecting
and interacting with others in society. The number of people increasing day by day on
social media platforms which helps in constructing new relationships over social media,
new communities are made on social media in the interest of the people. Social Media
platforms like Facebook, Instagram, LinkedIn, etc are the most used social media
platform for both individual and business purposes where we can communicate with
them and perform our tasks.

 Advantages of the Internet

• Online Banking and Transaction: The Internet allows us to transfer money online
through the net banking system. Money can be credited or debited from one
account to the other.

• Education, Online Jobs, Freelancing: Through the Internet, we are able to get more
jobs via online platforms like Linkedin and to reach more job providers.
Freelancing on the other hand has helped the youth to earn a side income and the
best part is all this can be done via the INTERNET.

• Entertainment: There are numerous options for entertainment online we can
listen to music, play games can watch movies and web series and listen to
podcasts, YouTube itself is a hub of knowledge as well as entertainment.

• New Job Roles: The Internet has given us access to social media and digital
products so we are having numerous new job opportunities like digital marketing
and social media marketing online businesses are earning huge amounts of
money just because the Internet is the medium to help us to do so.

• Best Communication Medium: The communication barrier has been removed from
the Internet. You can send messages via email, Whatsapp and Facebook. Voice
chatting and video conferencing are also available to help you to do important
meetings online.

• Comfort to humans: Without putting any physical effort you can do so many things
like shopping online it can be anything from stationeries to clothes, books to
personal items, etc. You can books train and plane tickets online.

• GPS Tracking and google maps: Yet another advantage of the internet is that you
are able to find any road in any direction and areas with less traffic with the help
of GPS on your mobile.

Disadvantages of the Internet

• Time Wastage: Wasting too much time on the internet surfing social media apps
and doing nothing decreases your productivity rather than wasting time on
scrolling social media apps one should utilize that time in doing something skillful
and even more productive.

• Bad Impacts on Health: Spending too much time on the internet causes bad
impacts on your health physical body needs some outdoor games exercise and
many more things. Looking at the screen for a longer duration causes serious
impacts on the eyes.

• Cyber Crimes: Cyberbullying, spam, viruses, hacking and stealing data are some
of the crimes which are on the verge these days. Your system which contains all
the confidential data can be easily hacked by cybercriminals.

• Effects on Children: Small children are heavily addicted to the Internet watching
movies and games all the time is not good for their overall personality as well as
social development.

• Bullying and Spreading Negativity: The Internet has given a free tool in the form
of social media apps to all those people who always try to spread negativity with
very revolting and shameful messages and try to bully each other which is wrong.

Explain The Services of Internet
The Internet provides a wide range of services that enable communication, information
sharing, entertainment, and business operations. Here are the key services of the
Internet:

1. Communication Services

• Email (Gmail, Outlook) – Send and receive messages instantly.

• Instant Messaging (WhatsApp, Telegram, Signal) – Real-time text & voice chats.

• VoIP & Video Calls (Zoom, Skype, FaceTime) – Free or low-cost calls over the
Internet.

• Social Media (Facebook, Instagram, Twitter/X, LinkedIn) – Connect, share, and
network.

2. Information Services

• World Wide Web (WWW) – Access websites via browsers (Chrome, Firefox).

• Search Engines (Google, Bing, DuckDuckGo) – Find information quickly.

• Online Encyclopedias (Wikipedia) – Free knowledge resource.

• News & Blogs – Stay updated on global events.

3. Entertainment Services

• Video Streaming (YouTube, Netflix, TikTok) – Watch videos, movies, and shows.

• Music & Podcasts (Spotify, Apple Music, SoundCloud) – Stream songs and audio
content.

• Online Gaming (Fortnite, PUBG, Roblox) – Multiplayer gaming with global players.

4. Business & E-Commerce Services

• Online Shopping (Amazon, eBay, Alibaba) – Buy and sell products globally.

• Digital Payments (PayPal, Venmo, UPI, Bitcoin) – Secure online transactions.

• Banking & FinTech (Online Banking, Robinhood, PayPal) – Manage money digitally.

• Cloud Computing (Google Drive, Dropbox, AWS) – Store and access files remotely.

5. Education & Work Services

• E-Learning (Coursera, Khan Academy, Udemy) – Online courses and
certifications.

• Remote Work (Zoom, Slack, Microsoft Teams) – Virtual offices and meetings.

• Open-Source Knowledge (GitHub, Stack Overflow, arXiv) – Collaborate on
projects.

6. Other Essential Services

• IoT (Smart Home, Wearables) – Internet-connected devices (Alexa,
smartwatches).

• VPN & Cybersecurity – Protect privacy and bypass restrictions.

• Government & Public Services – Online tax filing, voting, and utilities.

World Wide Web (WWW)
The World Wide Web (WWW or "the Web") is a system of interconnected web pages and
websites accessed via the Internet using web browsers (like Chrome, Firefox, or Safari).
It was invented by Tim Berners-Lee in 1989 to share scientific documents but has since
evolved into the primary way people access information online.

Key Features of the WWW

1. Web Pages & Websites

o Built using HTML (HyperText Markup Language).

o Accessed via URLs (e.g., https://www.google.com).

2. Hyperlinks (Clickable Links)

o Allow navigation between pages (the "web" of connections).

3. Web Browsers

o Software (Chrome, Firefox, Edge) that fetches & displays web pages.

4. Web Servers

o Computers that store and deliver websites to users.

5. HTTP/HTTPS Protocols

o Rules for transferring data securely between browsers and servers.

How the WWW Works

1. You type a URL (e.g., www.example.com) into a browser.

2. The browser uses DNS to convert the URL into an IP address.

3. A request is sent via HTTP/HTTPS to the web server.

4. The server sends back the HTML, CSS, and JavaScript files.

5. Your browser renders the page for you to view and interact with.

WWW vs. Internet – What’s the Difference?

WWW (Web) Internet

A service built on top of the Internet. The global network of connected
computers.

Uses HTTP/HTTPS to access websites. Uses TCP/IP for all data transfer.

Includes websites, web apps, and
browsers.

Includes email, FTP, gaming, IoT, and
more.

Importance of the WWW

✔ Information Access (Google, Wikipedia)

✔ Communication (social media, email)

✔ E-Commerce (Amazon, online banking)

✔ Entertainment (YouTube, Netflix)

✔ Cloud Services (Google Drive, Zoom)

What is Email
Email (short for electronic mail) is a digital messaging system that allows users to
send and receive text, files, images, and other data over the Internet. It works similarly
to traditional mail but is instant, free (mostly), and accessible worldwide.

Key Features of Email

✔ Fast & Global – Delivers messages in seconds across the world.

✔ Attachments – Supports sending documents, photos, and videos.

✔ Stored Electronically – Messages are saved in an inbox (no paper).

✔ Accessible on Any Device – Works on phones, computers, and tablets.

How Email Works

1. Sender writes an email (e.g., in Gmail, Outlook).

2. Email is sent via SMTP (Simple Mail Transfer Protocol).

3. Recipient’s email server (e.g., Yahoo, ProtonMail) receives it.

4. Recipient opens the email using POP3/IMAP protocols.

Common Email Providers

• Gmail (Google)

• Outlook (Microsoft)

• Yahoo Mail

• ProtonMail (Secure)

• iCloud Mail (Apple)

Email Address Format

📧 Example: username@domain.com

• Username (e.g., john.doe)

• @ symbol (separates name from domain)

• Domain (e.g., gmail.com, company.org)

Uses of Email

📨 Personal Communication (Friends, family)

💼 Business & Work (Official documents, meetings)

🛒 Online Services (Sign-ups, receipts, newsletters)

🔐 Security & Verification (Password resets, 2FA)

Advantages of Email

✅ Instant delivery (No delays like postal mail).

✅ Cost-effective (Most services are free).

✅ Eco-friendly (No paper waste).

✅ Organized (Folders, labels, spam filters).

Disadvantages of Email

❌ Spam & Phishing (Junk/scam emails).

❌ Security Risks (Hacking, data leaks).

❌ Overload (Too many emails can be overwhelming).

Email vs. Traditional Mail

Feature Email Traditional Mail

Speed Seconds/minutes Days/weeks

Cost Free (mostly) Paid (stamps)

Environment Paperless Uses paper

Accessibility Anywhere (Internet needed) Physical delivery

Social Networking
Social networking refers to the use of online platforms (social media) to connect with people,

share content, and interact in virtual communities. These platforms allow users to create

profiles, post updates, chat, and engage with others worldwide.

Key Features of Social Networking

1. User Profiles

• Each person has a personal page (e.g., Facebook profile, Instagram bio).

• Includes photos, bio, interests, and activity.

2. Friends/Followers System

• Users can connect (Facebook friends) or follow (Twitter, Instagram).

• Helps build a network of contacts.

3. Content Sharing

• Text posts (Twitter/X, Facebook)

• Photos & videos (Instagram, TikTok, Snapchat)

• Live streaming (Facebook Live, YouTube Live)

4. Interaction Tools

• Likes 👍, comments 💬, shares 🔄

• Direct messaging (DMs) – Private chats (WhatsApp, Messenger)

• Groups & Communities – People with shared interests (Facebook Groups, Reddit)

5. Algorithm-Based Feeds

• Platforms show content based on user behavior (likes, searches).

• Example: Instagram Reels, YouTube Shorts.

Popular Social Networking Platforms

Platform Main Purpose Key Features

Facebook General social networking Posts, Groups, Marketplace

Instagram Photo/video sharing Stories, Reels, IGTV

Twitter/X Short text updates Tweets, Threads, Trends

LinkedIn Professional networking Jobs, Resumes, B2B connections

TikTok Short-form videos Viral trends, Duets

Snapchat Disappearing media Snaps, Filters, Streaks

Reddit Forum-based discussions Subreddits, Upvotes/Downvotes

Uses of Social Networking

✔ Staying Connected – Chat with friends & family.

✔ News & Trends – Follow updates on global events.

✔ Business & Branding – Promote products/services (Facebook Ads, Influencers).

✔ Entertainment – Watch memes, live streams, and viral videos.

✔ Learning & Networking – LinkedIn for jobs, Twitter for industry news.

Advantages of Social Networking

✅ Global Reach – Connect with anyone, anywhere.

✅ Free Communication – No cost for basic use.

✅ Business Opportunities – Digital marketing, freelancing.

✅ Community Support – Find groups for hobbies, health, or causes.

Disadvantages of Social Networking

❌ Privacy Risks – Data leaks, hacking.

❌ Fake News & Misinformation – Spread of rumors.

❌ Addiction & Mental Health Issues – Excessive use leads to anxiety.

❌ Cyberbullying & Trolling – Harassment online.

Social Networking vs. Real-Life Networking

Aspect Social Networking Real-Life Networking

Speed Instant connections Takes time (meetings, events)

Reach Global (billions of users) Limited (local/face-to-face)

Depth Often superficial Stronger personal bonds

Record Permanent (posts stay online) Temporary (unless documented)

Mailing List
A mailing list is a collection of email addresses used to send messages (like newsletters,

updates, or promotions) to multiple people at once. It’s commonly used by businesses,

organizations, and content creators to communicate with subscribers efficiently.

Types of Mailing Lists

1. Announcement List (One-Way Communication)

• Used for sending updates (e.g., news, product launches).

• Example: Company newsletters, blog updates.

2. Discussion List (Two-Way Communication)

• Allows members to reply and engage in group conversations.

• Example: Google Groups, Yahoo Groups (now defunct).

3. Opt-In vs. Opt-Out Lists

• Opt-in – Users voluntarily subscribe (e.g., signing up on a website).

• Opt-out – Users are added by default but can unsubscribe (less common, riskier).

How Mailing Lists Work

1. Subscription

o Users sign up via a form (website, social media, event registration).

o Example: "Subscribe to our newsletter!" pop-up.

2. Email Collection & Storage

o Addresses are stored in a database (e.g., Mailchimp, Constant Contact).

3. Email Campaign Creation

o A marketer writes an email (promotional, informational).

o May include personalization (e.g., "Hi [Name]!").

4. Sending & Tracking

o Emails are sent in bulk.

o Tools track open rates, clicks, and unsubscribes.

Popular Mailing List Services

Service Best For Key Features

Mailchimp Small businesses Free tier, automation

Constant Contact Email marketing Templates, surveys

SendinBlue (Brevo) Transactional emails SMS + Email

ConvertKit Creators & bloggers Subscriber tagging

Google Groups Discussion lists Free, basic

Uses of Mailing Lists

✔ Marketing – Promote products/services.

✔ Newsletters – Share blog posts, industry news.

✔ Community Updates – Schools, nonprofits, clubs.

✔ Transactional Emails – Order confirmations, password resets.

Pros & Cons of Mailing Lists

✅ Advantages

• Cost-effective – Cheaper than SMS or postal mail.

• Targeted – Send personalized content.

• Automated – Schedule emails in advance.

• Measurable – Track opens, clicks, conversions.

❌ Disadvantages

• Spam Risks – If misused, emails go to junk folders.

• Unsubscribes – People may opt out if emails are irrelevant.

• Legal Compliance – Must follow laws like GDPR (EU) / CAN-SPAM (US).

Mailing List vs. Social Media

Feature Mailing List Social Media

Ownership You control the data Platform owns your reach

Delivery Direct to inbox Algorithm-dependent

Engagement Higher conversion More casual

Privacy Email is private Public/shared

Best Practices for Mailing Lists

🔹 Get permission (use double opt-in).

🔹 Segment lists (e.g., customers vs. leads).

🔹 Avoid spammy content (follow CAN-SPAM rules).

🔹 Test before sending (check formatting).

News Group
A newsgroup is an online discussion platform where users can post and read
messages on specific topics, similar to a public bulletin board or forum. Newsgroups
are part of the Usenet system, one of the oldest decentralized communication
networks (even older than the World Wide Web!).

Key Features of Newsgroups

1. Topic-Based Discussions

• Each newsgroup focuses on a specific subject (e.g., comp.software, sci.space).

• Organized hierarchically (e.g., alt.fan.harry-potter).

2. Decentralized & Distributed

• Messages are stored on multiple Usenet servers worldwide.

• No single company controls them (unlike Facebook or Reddit).

3. Text-Based (Mostly)

• Originally designed for text discussions, but some support binaries (files).

4. No Real-Time Chat

• Works like an asynchronous forum (not live like Slack or Discord).

How Newsgroups Work

1. User Posts a Message

o Sent to a Usenet server using NNTP (Network News Transfer Protocol).

2. Server Propagates the Message

o The post gets shared across multiple servers globally.

3. Others Read & Reply

o Users access the newsgroup via a newsreader client (e.g., Mozilla
Thunderbird).

Types of Newsgroups

Category Example Description

comp. comp.software Computer-related topics

sci. sci.astronomy Science discussions

rec. rec.games.chess Recreational hobbies

soc. soc.culture.india Social/cultural topics

alt. alt.music.beatles Alternative/unofficial groups

Newsgroups vs. Modern Forums

Feature Newsgroups (Usenet) Modern Forums (Reddit, etc.)

Ownership Decentralized (no single owner) Company-controlled (e.g.,
Reddit Inc.)

Access Requires a newsreader (e.g.,
Thunderbird)

Web-based (no special
software)

Speed Slower propagation Instant posts

Content Mostly text, some binaries Rich media (images, videos,
GIFs)

Popularity Declined after the 2000s Dominant (Reddit, Discord,
Facebook Groups)

Uses of Newsgroups

✔ Technical Support – Experts help troubleshoot issues.

✔ Hobby Discussions – Share interests (e.g., movies, books).

✔ File Sharing – Some groups distribute binaries (e.g., alt.binaries.*).

✔ Historical Archive – Early internet discussions preserved.

Pros & Cons of Newsgroups

✅ Advantages

• No censorship (unlike corporate social media).

• Long-lasting threads (some date back decades!).

• Privacy-focused (no tracking like Facebook/Google).

❌ Disadvantages

• Steep learning curve (requires NNTP/newsreader setup).

• Spam & malware risks (unmoderated groups).

• Declining activity (most users moved to Reddit/forums).

How to Access Newsgroups Today

1. Get a Usenet Provider (e.g., News hosting, Giga news).

2. Use a Newsreader (e.g., Mozilla Thunderbird, Newsbin).

3. Subscribe to Groups (search for topics like comp.* or alt.*).

What is a web browser?
A web browser is a software application that lets you access and interact with content
on the internet. When you type in a website address (like www.example.com) or click
on a link, the browser fetches the information from a server and displays it on your
device in a way that's easy to read and navigate.

Some popular web browsers are Google Chrome, Mozilla Firefox, Safari, Microsoft
Edge, and Opera.

Browsers can show websites, play videos, run web apps, manage bookmarks, and
even install extensions to add extra features.
Behind the scenes, they use technologies like HTML, CSS, and JavaScript to render
web pages properly.

In short:
Without a web browser, you wouldn't be able to surf the web.

Functions of Web Browsers

Web browsers have a few major jobs:

1. Access Websites

o They retrieve web pages from servers using web addresses (URLs).

2. Render Web Content

o They display text, images, videos, and interactive elements by interpreting
code (HTML, CSS, JavaScript).

3. Navigation

o Browsers let you move between web pages (back, forward, refresh,
home, bookmarks).

4. Security

o They protect users from dangerous websites, block pop-ups, support

private browsing, and handle SSL certificates (the "lock" icon 🔒).

5. Data Management

o They store cookies, cache files, browsing history, and saved passwords to
make web browsing faster and more convenient.

6. Extensions and Add-ons

o They allow extra features to be added, like ad blockers, password
managers, VPNs, etc.

7. Synchronization

o Many browsers let you sync your bookmarks, passwords, and settings
across devices.

Types of Web Browsers

Browsers can be categorized mainly by popularity or by their underlying technology
(their "engine"). Here’s a list:

Popular Web Browsers

• Google Chrome
(Fast, popular, uses the Blink engine)

• Mozilla Firefox
(Open-source, focuses on privacy, uses Gecko engine)

• Safari
(Made by Apple, optimized for macOS and iOS, uses WebKit engine)

• Microsoft Edge
(New versions are Chromium-based; old versions used EdgeHTML)

• Opera
(Feature-rich with built-in VPN, ad blocker, based on Chromium/Blink)

Special/Alternative Web Browsers

• Brave
(Privacy-focused, blocks ads and trackers automatically)

• Tor Browser
(Built for anonymity and accessing the dark web)

• Vivaldi
(Highly customizable, aimed at power users)

• DuckDuckGo Browser (Mobile-first)
(Focuses heavily on privacy and blocking trackers)

What is a Web Server
A web server is basically a computer (or a program) that stores websites and delivers
them to users over the internet.

When you type a web address like www.example.com into your browser, here’s what
happens:

• Your browser sends a request to the web server where that website is stored.

• The web server finds the right page (like index.html) and sends it back to your
browser.

• Then your browser shows the website on your screen.

Simple way to remember:

Web browser = asks for a page
Web server = gives the page

Functions of a Web Server:

• Store website files (HTML, images, videos, CSS, JavaScript, etc.)

• Handle requests from browsers (like "Hey, give me the homepage!")

• Send responses back with the correct web pages

• Manage communication using protocols like HTTP or HTTPS

• Ensure security (with SSL certificates, access control, etc.)

• Log activity (tracking who accessed what and when)

Examples of Popular Web Servers:

Web Server Notes

Apache HTTP Server One of the oldest and most used servers

Nginx Very fast and good at handling many users

Microsoft IIS Integrated with Windows systems

LiteSpeed High performance and lightweight

Google Web Server (GWS) Used internally by Google

What are Web Directories?
A Web Directory is a collection of websites that are organized by categories and
subcategories.
Instead of searching the whole internet like a search engine (e.g., Google), a web
directory lets you browse through topics to find websites manually.

Think of it like a library:

• Instead of searching blindly, you browse shelves labeled Science, Art, Technology,
etc.

• Inside each shelf, you find related books (or in this case, websites).

Functions of Web Directories

• Categorize Websites: Group similar websites together (like Education, Sports,
Business).

• Help Discovery: Let users find websites by browsing topics, not just keywords.

• Provide Quality Listings: Often websites were manually reviewed before being
added (better quality than random search results).

• Improve Website SEO: Websites listed in good directories could get better
visibility.

Examples of Early Web Directories

Web Directory Notes

Yahoo Directory One of the first big web directories (closed in
2014)

DMOZ (Open Directory
Project)

Massive open web directory (closed in 2017)

Best of the Web (BOTW) Still running, curated directory

Business.com Directory focused on business-related websites

Difference Between Web Directory and Search Engine

Feature Web Directory Search Engine

Organized by Categories Keywords and Algorithms

Website Addition Manual (human reviewed) Automatic Crawling (bots)

Example Yahoo Directory, DMOZ Google, Bing

Search Style Browse categories Enter keywords and search

Simple Diagram:

[Web Directory]

 ├── Business

 │ ├── Marketing Websites

 │ └── Finance Websites

 ├── Education

 │ ├── Schools

 │ └── Online Courses

 ├── Technology

 ├── Software Companies

 └── Gadget Reviews

In Short:

A Web Directory is like a well-organized phone book 📖 for websites, while a Search

Engine is like a fast detective 🕵️‍♂️ that finds websites based on your clues (keywords).

What is a website ?
A website is a collection of many web pages, and web pages are digital files that are
written using HTML(Hypertext Markup Language). To make your website available to
every person in the world, it must be stored or hosted on a computer connected to the
Internet round a clock. Such computers are known as a Web Server.

The website’s web pages are linked with hyperlinks and hypertext and share a common
interface and design. The website might also contain some additional documents and
files such as images, videos, or other digital assets.

With the Internet invading every sphere, we see websites for all kinds of causes and
purposes. So, we can also say that a website can also be thought of as a digital
environment capable of delivering information and solutions and promoting interaction

between people, places, and things to support the goals of the organization it was
created for.

Components of a Website

We know that a website is a collection of a webpages hosted on a web-server. These are
the components for making a website.

• Webhost: Hosting is the location where the website is physically located. Group
of webpages (linked webpages) licensed to be called a website only when the
webpage is hosted on the webserver. The webserver is a set of files transmitted
to user computers when they specify the website’s address..

• Address: Address of a website also known as the URL of a website. When a user
wants to open a website then they need to put the address or URL of the website
into the web browser, and the asked website is delivered by the webserver.

• Homepage : Home page is a very common and important part of a webpage. It is
the first webpage that appears when a visitor visits the website. The home page
of a website is very important as it sets the look and feel of the website and directs
viewers to the rest of the pages on the website.

• Design : It is the final and overall look and feel of the website that has a result of
proper use and integration elements like navigation menus, graphics, layout,
navigation menus etc.

• Content : Every web pages contained on the website together make up the content
of the website. Good content on the webpages makes the website more effective
and attractive.

• The Navigation Structure: The navigation structure of a website is the order of the
pages, the collection of what links to what. Usually, it is held together by at least
one navigation menu.

How to access Websites?

When we type a certain URL in a browser search bar, the browser requests the page
from the Web server and the Web server returns the required web page and its content
to the browser. Now, it differs from how the server returns the information required in
the case of static and dynamic websites.

Types of Website

1. Static Website:
In Static Websites, Web pages are returned by the server which are prebuilt
source code files built using simple languages such as HTML, CSS, or JavaScript.
There is no processing of content on the server (according to the user) in Static
Websites. Web pages are returned by the server with no change therefore, static
Websites are fast. There is no interaction with databases. Also, they are less
costly as the host does not need to support server-side processing with different
languages.

2. Dynamic Website:
In Dynamic Websites, Web pages are returned by the server which is processed
during runtime means they are not prebuilt web pages, but they are built during
runtime according to the user’s demand with the help of server-side scripting
languages such as PHP, Node.js, ASP.NET and many more supported by the
server. So, they are slower than static websites but updates and interaction with
databases are possible. Dynamic Websites are used over Static Websites as
updates can be done very easily as compared to static websites (Where altering
in every page is required) but in Dynamic Websites, it is possible to do a common
change once, and it will reflect in all the web pages.

3. Other Types Of Websites

There are different types of websites on the whole internet, we had chosen some
most common categories to give you a brief idea –

• Blogs: These types of websites are managed by an individual or a small group of
persons, they can cover any topics — they can give you fashion tips, music tips,
travel tips, fitness tips. Nowadays professional blogging has become an external
popular way of earning money online.

• E-commerce: These websites are well known as online shops. These websites
allow us to make purchasing products and online payments for products and
services. Stores can be handled as standalone websites.

• Portfolio: These types of websites acts as an extension of a freelancer resume. It
provides a convenient way for potential clients to view your work while also
allowing you to expand on your skills or services.

• Brochure: These types of websites are mainly used by small businesses, these
types of websites act as a digital business card, and used to display contact
information, and to advertise services, with just a few pages.

• News and Magazines: These websites needs less explanation, the main purpose
of these types of websites is to keep their readers up-to-date from current affairs
whereas magazines focus on the entertainment.

• Social Media: We all know about some famous social media websites like
Facebook, Twitter, Reddit, and many more. These websites are usually created to
let people share their thoughts, images, videos, and other useful components.

• Educational: Educational websites are quite simple to understand as their name
itself explains it. These websites are designed to display information via audio or
videos or images.

• Portal: These types of websites are used for internal purposes within the school,
institute, or any business, These websites often contain a login process allowing
students to access their credential information or allows employees to access
their emails and alerts.

What are Search Engines?
A Search Engine is a software system that helps you find information on the internet by
typing in keywords or questions.
It searches through millions of websites, picks the most relevant ones, and shows you
a list of results — usually in seconds.

When you search something like "best pizza near me", the search engine looks into its
massive database and brings you the best websites, maps, or reviews related to your
request.

4. Main Functions of a Search Engine:

• Crawling
(The search engine scans the internet to find new or updated web pages using
bots called crawlers or spiders.)

• Indexing
(It organizes and stores the information found into a huge database called the
index.)

• Ranking/Search Results
(When you search, it ranks the most relevant results based on things like
keywords, quality, and popularity.)

• Serving Results
(It displays the most useful links, images, videos, or news articles for your
query.)

Popular Search Engines:

Search Engine Special Feature

Google Smartest and fastest, biggest database

Bing Made by Microsoft, good with images

Yahoo! Search Older player, now powered by Bing

DuckDuckGo Focuses on privacy, no tracking

Baidu Major search engine in China

Yandex Popular search engine in Russia

Difference Between Search Engine and Web Directory

Feature Search Engine Web Directory

Search Method Keyword-based Category-based

Listing Automatic (by bots) Manual (human reviewed)

Examples Google, Bing, DuckDuckGo Yahoo Directory, DMOZ

Speed Very fast Slower browsing

Scale Massive, millions of pages Smaller, curated collection

In short:

A Search Engine is like a super smart librarian that finds exactly what you ask for —
almost instantly!

Usage of Search Engine

Search engines have so many usages and some of them are:

• Searching for information: People use a search engine to search for any kind of
information present on the internet. For example, Rohit wants to buy a mobile
phone but he does not know which one is the best mobile phone. So he searches
“best mobile phones in 2021” in the search engine and gets the list of best
mobile phones along with their features, reviews, and prices.

• Searching images and videos: Search engines are also used to search images
and videos. There are so many videos and images available on the internet in
different categories like plants, animals, flowers, etc., you can search them
according to your need.

• Searching location: Search engines are also used to find locations. For example,
Seema is on a Goa trip but she doesn’t know the location of Palolem beach. So
she searches “Palolem beach” on the search engine and then the search engine
gives the best route to reach Palolem beach.

• Searching people: Search engines are also used to find people on the internet
around the world.

• Shopping: Search engines are also used for shopping. Search engines optimize
the pages to meet the needs of the user and give the lists of all the websites
that contain the specified product according to the best price, reviews, free
shipping, etc.

• Entertainment: Search engines are also used for entertainment purposes. It is
used to search videos, movies, games, movie trailers, reviews of movies, social
networking sites, etc. For example, Rohan wants to watch a movie named “Ram”,

then he searches this movie on a search engine and the search engine returns a
list of links (of the websites) that contain the Ram movie.

• Education: Search engines are also used for education. With the help of search
engines, people can learn anything they wanted to learn like cooking,
programming languages, home decorations, etc. It is like an open school where
you can learn anything for free.

Web Page Program Development
Web development is the process of creating, building, and maintaining websites and web
applications. It involves everything from web design to programming and database
management. Web development is generally divided into three core areas: Frontend
Development, Backend Development, and Full Stack Development.

Frontend Development

Frontend development refers to everything that users see and interact with on the
website. It involves the design, structure, and layout of the website and is often referred
to as the ‘client side’ of an application.

Frontend Technologies

• HTML: HTML stands for HyperText Markup Language. It is the standard markup
language used to create and design web pages, defining their structure and
layout.

• CSS: Cascading Style Sheets fondly referred to as CSS is a simply designed
language intended to simplify the process of making web pages presentable. It is
used to style our website.

• JavaScript: JavaScript is a scripting language used to provide a dynamic behavior
to our website.

Frontend Frameworks/Libraries

• React.js : A popular JavaScript library for building dynamic, component-based
user interfaces.

• Angular : A full-fledged framework for building single-page applications (SPAs),
with features like two-way data binding and dependency injection.

• Vue.js : A progressive JavaScript framework that is flexible and can be used for
building both simple and complex user interfaces.

Backend Development

Backend development refers to the server side of a website, where the logic and data
are processed and stored. Users do not directly interact with this part, but it ensures
that the website works properly.

Server-side Programming Languages and Frameworks

• PHP: PHP is a server-side scripting language designed specifically for web
development.

• Java: Java is one of the most popular and widely used programming languages.
It is highly scalable.

• Python: Python is a programming language that lets you work quickly and
integrate systems more efficiently.

• Node.js: Node.js is an open source and cross-platform runtime environment for
executing JavaScript code outside a browser.

• Ruby: Ruby is a dynamic, reflective, object-oriented, general-purpose
programming language.

• C# : C# is a high-level, general-purpose programming language developed by
Microsoft.

Backend Languages Backend Frameworks

PHP Laravel, Wordpress

Java Spring, Hibernate

Python Django, Flask, Python PIP

Node.js Express

Ruby Ruby on Rails

C# .NET

Databases

• MySQL

• PostgreSQL

• MongoDB

• MariaDB

• SQLite

APIs (Application Programming Interfaces)

• RESTful API's

• GraphQL

Full Stack Development

Full-stack development refers to the practice of developing both the frontend and
backend of a website or web application. Full-stack developers have a deep
understanding of both areas and can build end-to-end solutions.

Full Stack Technologies:

• MERN Stack : MongoDB, Express.js, React, Node.js

• MEAN Stack : MongoDB, Express.js, Angular, Node.js

• JAMstack : JavaScript, APIs, Markup

• Django Stack : Django, MySQL/PostgreSQL, HTML/CSS/JavaScript

• Spring Boot Stack : Spring Boot, MySQL/PostgreSQL, Java

• LAMP Stack : Linux, Apache, MySQL, PHP

• LEMP Stack : Linux, Engine-X, MySQL, PHP

Databases

In web technology, a database is a structured collection of data that is stored
electronically and accessed via a web application. It serves as the backend component
where data is stored, managed, and retrieved. Databases can be relational (like MySQL,
PostgreSQL) using structured tables and SQL for queries, or non-relational (like
MongoDB, CouchDB) which store data in flexible, document-oriented formats. They
enable web applications to handle dynamic content, user data, transactions, and more
by providing efficient storage, retrieval, and manipulation capabilities. Database
management systems (DBMS) are used to interact with the database, ensuring data
integrity, security, and performance.

1. Relational Databases

A relational database stores data in tables, similar to a spreadsheet, where each table
has rows and columns. The rows hold individual records, and the columns define the
data attributes. Tables can be linked to each other through special keys, allowing related
data to be connected.

• Postgre SQL : PostgreSQL is a powerful, open-source relational database that
supports advanced SQL features and complex queries. It handles structured data,
ensures ACID compliance, and is known for its reliability and extensibility.

• MariaDB : MariaDB is an open-source relational database that evolved from
MySQL, offering improved performance, security, and features. It supports SQL
queries, ACID compliance, and is highly compatible with MySQL.

• MySQL : MySQL is an open-source relational database management system that
uses SQL for managing structured data. It’s known for its reliability, ease of use,
and performance, widely used in web applications.

2. NoSQL Databases

A NoSQL database stores data in a flexible, non-tabular format, unlike traditional
relational databases. Instead of using tables with rows and columns, NoSQL databases
might use documents, key-value pairs, wide-columns, or graphs to store data. This
allows them to handle large amounts of unstructured or semi-structured data efficiently.
They are designed to scale easily and manage big data applications.

• Mongodb : MongoDB is a NoSQL database storing data in JSON-like documents.
It handles unstructured data, supports powerful queries, and scales easily across
servers, making it popular for flexible, scalable applications.

• Cassandra : Apache Cassandra is an open-source NoSQL database that is used
for handling big data. It has the capability to handle structure, semi-structured,
and unstructured data.

• Redis : Redis is an in-memory NoSQL database known for its speed. It supports
various data structures like strings, hashes, and lists, making it ideal for caching,
real-time analytics, and messaging.

Main Roles in a Website Development Team
Role What They Do

Project Manager Plans the project, manages the team, communicates
with the client.

Web Designer Designs the layout, colors, fonts, and overall look of
the website (UI/UX design).

Front-End Developer Builds the visible parts of the website (what users see
and interact with) using HTML, CSS, JavaScript.

Back-End Developer Works on the server side — databases, APIs,
authentication, logic.

Full-Stack Developer Can handle both front-end and back-end tasks.

Content Writer Creates the text (content) for the website — articles,
product descriptions, blog posts.

Graphic Designer Designs logos, banners, icons, images, and other
visuals.

SEO Specialist Optimizes the website to rank better on search
engines like Google.

Quality Assurance
(QA) Tester

Tests the website for bugs, broken links, security
issues, and usability problems.

System Administrator
(SysAdmin)

Manages the server where the website is hosted,
handles deployment and maintenance.

Digital Marketing
Specialist

Promotes the website through social media, email
campaigns, ads, etc.

Simple Diagram of Workflow:

[Client]

 ↓

[Project Manager]

 ↓

[Web Designer] → (UI/UX Design)

 ↓

[Front-End Developer] → (Builds Interface)

 ↓

[Back-End Developer] → (Server + Database)

 ↓

[Content Writer] → (Adds Content)

 ↓

[SEO Specialist] → (Optimizes Search)

 ↓

[QA Tester] → (Checks Everything)

 ↓

[System Admin] → (Launches Website)

 ↓

[Digital Marketing] → (Promotes Website)

Quick Example:

Suppose you’re building an online store:

• Designer makes the store look attractive 🛒

• Front-End Developer makes "Add to Cart" button work 🎯

• Back-End Developer makes sure products are saved in a database 📦

• Content Writer writes cool product descriptions ✍️

• SEO Specialist helps the store appear on Google search 🕵️‍♂️

• Tester ensures customers don't face errors 🧪

• SysAdmin makes sure the server doesn't crash 🔧

In short:

Building a website is like making a movie — you need directors, actors, camera crew,
editors... all working together!

Scope of Web Development
Web Development means building and maintaining websites.
Its scope (range of opportunities) is huge and keeps growing because everything is
going online — businesses, education, shopping, banking, entertainment, even
healthcare.

Major Areas Covered by Web Development:

Area Examples

Front-End Development
(Client-side)

Designing what users see: websites, mobile apps
(HTML, CSS, JavaScript, React, etc.)

Back-End Development
(Server-side)

Managing data, servers, databases (Node.js, PHP,
Python, Java, etc.)

Full-Stack Development Combination of Front-End + Back-End skills.

Web Design Focus on how the website looks and feels (UI/UX).

E-commerce
Development

Building online stores (like Amazon, Flipkart).

Web App Development Making apps like Gmail, Instagram Web, Google
Docs.

Content Management
Systems (CMS)

Developing with platforms like WordPress, Joomla.

API Development and
Integration

Building or connecting APIs (for apps to talk to
each other).

Web Security Protecting websites from hacking, malware, and
data theft.

Progressive Web Apps
(PWA)

Apps that work like mobile apps but inside a
browser.

Why the Scope is Growing:

• Explosion of E-commerce
(Every business needs an online shop.)

• Rise of Mobile Internet
(Websites must work smoothly on phones/tablets.)

• Remote Work and Online Services
(Web apps for online meetings, classes, banking.)

• Startup Culture
(Startups need websites and apps to launch.)

• Government and Education Going Digital
(Online public services, digital learning platforms.)

• Cloud Computing
(Hosting websites and apps remotely is easier now.)

Job Opportunities in Web Development:

Position Work

Web Developer Build websites and web apps

UI/UX Designer Design user-friendly interfaces

Full-Stack Developer Handle both front-end and back-end

Web Project Manager Lead web projects from start to finish

Web Security Specialist Keep websites safe from attacks

CMS Developer Build sites using WordPress, etc.

E-commerce Developer Create online shopping sites

Technologies That Are Hot in Web Dev:

• HTML5, CSS3, JavaScript (basic building blocks)

• React, Angular, Vue.js (modern front-end frameworks)

• Node.js, Django, Laravel (back-end frameworks)

• WordPress, Shopify (popular platforms)

• APIs, Cloud hosting (AWS, Azure)

What are Scripting Languages?
A scripting language is a type of programming language that is mainly used to automate
tasks, control other programs, or build small programs that don't need to be compiled
first.

• Normal programming languages (like C++ or Java) often need to be compiled
(translated into machine code first).

• Scripting languages are usually interpreted — they run line-by-line without
compiling.

They are faster to write, easy to test, and great for web development, automation, games,
and data processing.

Main Features of Scripting Languages:

Feature Details

Interpreted Code runs directly without a separate compilation step.

Easy to learn Simple syntax and quicker to write programs.

Dynamic Typing No need to declare the type of variables.

Automation Great for automating repetitive tasks.

Embedded in
applications

Can be used inside web pages, games, software (e.g.,
JavaScript in websites).

Examples of Scripting Languages:

Language Used For

JavaScript Web page interactivity (front-end and back-end with Node.js)

Python Web apps, AI/ML, automation, scripting tasks

PHP Server-side scripting for websites (like WordPress)

Ruby Web development (Ruby on Rails framework)

Perl Text processing, network programming

Bash Automating tasks in Linux/Unix systems

Lua Scripting in games and embedded systems

Where Scripting Languages Are Used:

• Web development (JavaScript, PHP)

• System administration (Bash, Python)

• Data analysis (Python, R)

• Game development (Lua in Roblox, Python in game engines)

• Task automation (Scripts for backups, file conversions, etc.)

What is JavaScript?
JavaScript (JS) is a programming language mainly used to make websites interactive.

When you visit a website:

• HTML structures the content 📄

• CSS styles it 🎨

• JavaScript makes it come alive with movements, popups, sliders, games, and

more! ⚡

JavaScript can change web pages in real-time, respond to user actions, and even
communicate with servers.

Main Features of JavaScript:

Feature Details

Client-side scripting Runs directly in your browser (like Chrome, Firefox).

Event-driven Reacts to user actions like clicks, typing, scrolling.

Lightweight Fast and easy to load.

Dynamic content Can change parts of a webpage without reloading it.

Works with HTML/CSS Enhances the basic website built with HTML and CSS.

Also used server-side With Node.js, JavaScript now runs on servers too!

What JavaScript Can Do:

• Show pop-up messages (alerts)

• Validate forms (check if the user entered a valid email)

• Create animations and image sliders

• Build interactive maps, games, apps

• Load new content without refreshing (AJAX)

• Control audio and video players

• Create full web applications (like Gmail, Facebook)

Where JavaScript is Used:

Area Example

Front-End Web Development React.js, Vue.js, Angular

Back-End Development Node.js

Mobile App Development React Native

Game Development Phaser, Babylon.js

Serverless Applications AWS Lambda with JS

What is PHP?
PHP stands for "Hypertext Preprocessor" (yes, it’s a tricky name because it’s a
recursive acronym).
It is a server-side scripting language mainly used to build dynamic websites and web
applications.

• Server-side means: PHP code runs on the web server, not in your browser.

• Dynamic websites = Websites that change content automatically, like Facebook,
WordPress, E-commerce stores.

✅ When you visit a page that ends with .php, it's likely running PHP behind the scenes!

Main Features of PHP:

Feature Details

Server-side scripting Code runs on the web server, not on your device.

Open-source Free to use and modify.

Easy to learn Simple syntax, especially for beginners.

Works with databases Especially MySQL — perfect for storing user data.

Cross-platform Runs on Windows, Linux, macOS servers.

Fast and efficient Good for creating websites quickly.

What PHP Can Do:

• Create dynamic page content (like showing different data to different users)

• Handle forms (collect user inputs like login, signup)

• Manage sessions and cookies (like remembering if you're logged in)

• Interact with databases (store and fetch data, like posts, users, orders)

• Build entire CMS platforms (like WordPress, Joomla, Drupal)

• Create e-commerce sites (online stores like Shopify-like websites)

Famous Websites Built with PHP:

Website Notes

Facebook Originally built with PHP.

WordPress The world's biggest CMS built on PHP.

Wikipedia Written in PHP.

Slack (early version) Started with PHP.

What are Web Hosting Services?
Web Hosting is a service that provides the space and technology needed to store and
make your website available on the internet.

When you create a website (with HTML, CSS, PHP, etc.), it’s just files.
To let the world see it, those files must be saved (hosted) on a special computer called
a server that’s connected to the internet 24/7.
That’s exactly what a Web Hosting Service does!

✅ Without web hosting, your website would only live on your own computer — no one

else could visit it.

Main Functions of Web Hosting Services:

Function Details

Storage Save your website files, images, videos, code.

Internet
Connection

Keep your website online and accessible worldwide.

Security Protect your site with firewalls, SSL certificates, backups.

Domain Support Connect your website to your domain name (like
www.example.com).

Technical Support Help you if something goes wrong.

Popular Web Hosting Companies:

Company Special Features

Bluehost Beginner-friendly, good for WordPress.

HostGator Affordable plans, reliable uptime.

GoDaddy Hosting + domain services together.

SiteGround Known for speed and customer service.

AWS (Amazon Web Services) Powerful cloud hosting for big websites.

Types of Web Hosting:

Type Explanation

Shared Hosting Many websites share the same server. (Cheap, best for
beginners)

VPS Hosting Virtual private server — shared server, but more
isolated. (Better performance)

Dedicated Hosting You get an entire server just for your site. (Expensive,
for big websites)

Cloud Hosting Your website uses multiple servers (scalable, flexible,
reliable).

Managed WordPress
Hosting

Special hosting optimized for WordPress sites.

🍪 What Are Cookies (in Computers)?
In the world of websites, a cookie is a small piece of data that a website stores on your
device (like your computer, phone, or tablet) to remember information about you.

✅ Cookies help websites "remember" you — your preferences, login info, or things you

did on the site.

Main Purpose of Cookies:

Use Example

Remembering
logins

Stay signed in without typing your password again.

Tracking user
activity

Knowing what products you looked at on a shopping
site.

Personalizing
content

Showing your name, favorite settings, or location.

Shopping carts Remembering items you added to cart even if you leave
the site.

How Cookies Work (Simple Steps):

1. You visit a website.

2. Website sends a cookie to your browser.

3. Your browser saves it on your device.

4. When you visit again, the browser sends the cookie back to the website.

5. The website uses that data to customize your experience.

Types of Cookies:

Type Meaning

Session Cookies Temporary, deleted when you close the browser.

Persistent
Cookies

Stay on your device for a set time (like 1 week, 1 year).

First-party
Cookies

Set by the website you are visiting.

Third-party
Cookies

Set by other companies (like advertisers) to track you
across different websites.

Simple Example:

When you log into Gmail and check "Remember me":

• Gmail stores a cookie in your browser.

• Next time you visit Gmail, it sees the cookie and keeps you logged in automatically.

Security Concerns Of Cookies:

• Cookies are NOT viruses or malware.

• But too many cookies can slow down your browser.

• Some cookies track your behavior for ads, which is why websites now ask your
permission ("This site uses cookies" popups).

What is Web 2.0 and Web 3.0?
When we talk about Web 2.0 and Web 3.0, we’re talking about different "generations" or
"versions" of the internet — how it has changed over time.

First, Quick Timeline:

Version Period Main Idea

Web 1.0 1990s – early
2000s

"Read-only web" — Static websites, no user
interaction.

Web
2.0

2004 – Now "Read and write web" — Social media, user-
generated content.

Web
3.0

Now – Future "Read, write, and own web" — Decentralization,
blockchain, AI-powered web.

What is Web 2.0? (The Current Internet)

Web 2.0 is the version of the internet where users are active participants — they create
content, interact, and share information easily.

It’s about social web, collaboration, sharing.

Main Features of Web 2.0:

Feature Example

User-generated
content

Users create blogs, videos, posts (YouTube,
Instagram).

Social networking Connect and interact (Facebook, Twitter).

Dynamic websites Pages update instantly without reloading (AJAX).

Mobile and apps Internet services on phones easily.

Cloud computing Store data online (Google Drive, Dropbox).

✅ In Web 2.0, big companies like Google, Facebook, Amazon control a lot of the web.

What is Web 3.0? (The Next Generation)

Web 3.0 is about making the internet more intelligent, private, decentralized, and user-
owned.

It's like a smarter, freer, more secure web where you have more control.

Main Features of Web 3.0:

Feature Example

Decentralization No single company controls the data (Blockchain,
IPFS).

Ownership and control Users own their own data, not corporations.

Smart Contracts Programs that run automatically on blockchains
(Ethereum).

Cryptocurrency
Payments

Use Bitcoin, Ethereum for payments instead of banks.

Artificial Intelligence
(AI)

Smarter websites that understand you (personalized
search, recommendations).

Metaverse and Virtual
Reality

New 3D worlds connected to Web 3.0.

✅ Web 3.0 is still growing — it’s not everywhere yet, but it’s the future vision of the

internet.

Simple Comparison Table:

Feature Web 2.0 Web 3.0

Ownership Companies own data Users own their data

Architecture Centralized servers Decentralized networks
(blockchain)

Monetization Ad-based economy (sell
your data)

Token-based economy (earn
crypto)

Examples Facebook, YouTube,
Twitter

Ethereum, OpenSea, Decentralized
apps (dApps)

Technology Social media, cloud
computing

Blockchain, AI, crypto, VR/AR

In Short:

Web 2.0 = "You share your life, but companies control it."
Web 3.0 = "You control your life and data, and can earn from it."

Section 2

Html 5.0

language

WitH examples

Lectured By : Sardar Azeem

What is HTML
HTML is an acronym which stands for Hyper Text Markup Language which is used for
creating web pages and web applications. Let's see what is meant by Hypertext Markup
Language, and Web page.

Hyper Text: Hyper Text simply means "Text within Text." A text has a link within it, is a

hypertext. Whenever you click on a link which brings you to a new webpage, you have
clicked on a hypertext. HyperText is a way to link two or more web pages (HTML
documents) with each other.

Markup language: A markup language is a computer language that is used to apply

layout and formatting conventions to a text document. Markup language makes text more
interactive and dynamic. It can turn text into images, tables, links, etc.

Web Page: A web page is a document which is commonly written in HTML and

translated by a web browser. A web page can be identified by entering an URL. A Web
page can be of the static or dynamic type. With the help of HTML only, we can create
static web pages.

Hence, HTML is a markup language which is used for creating attractive web pages with
the help of styling, and which looks in a nice format on a web browser. An HTML
document is made of many HTML tags and each HTML tag contains different content.

Example Program

<!DOCTYPE html>

<html>

<head>

<title>Web page title</title>

</head>

<body>

<h1>Write Your First Heading</h1>

<p>Write Your First Paragraph.</p>

</body>

</html>

Description of HTML Example

<!DOCTYPE>: It defines the document type or it instruct the browser about the version of
HTML.

<html > :This tag informs the browser that it is an HTML document. Text between html
tag describes the web document. It is a container for all other elements of HTML except
<!DOCTYPE>

<head>: It should be the first element inside the <html> element, which contains the
metadata(information about the document). It must be closed before the body tag opens.

<title>: As its name suggested, it is used to add title of that HTML page which appears at
the top of the browser window. It must be placed inside the head tag and should close
immediately. (Optional)

<body> : Text between body tag describes the body content of the page that is visible to
the end user. This tag contains the main content of the HTML document.

<h1> : Text between <h1> tag describes the first level heading of the webpage.

<p> : Text between <p> tag describes the paragraph of the webpage.

Brief History of HTML

In the late 1980's , a physicist, Tim Berners-Lee who was a contractor at CERN, proposed
a system for CERN researchers. In 1989, he wrote a memo proposing an internet based
hypertext system.

Tim Berners-Lee is known as the father of HTML. The first available description of HTML
was a document called "HTML Tags" proposed by Tim in late 1991. The latest version of
HTML is HTML5, which we will learn later in this tutorial.

HTML Versions

Since the time HTML was invented there are lots of HTML versions in market, the brief
introduction about the HTML version is given below:

HTML 1.0: The first version of HTML was 1.0, which was the barebones version of HTML
language, and it was released in1991.

HTML 2.0: This was the next version which was released in 1995, and it was standard
language version for website design. HTML 2.0 was able to support extra features such
as form-based file upload, form elements such as text box, option button, etc.

HTML 3.2: HTML 3.2 version was published by W3C in early 1997. This version was
capable of creating tables and providing support for extra options for form elements. It
can also support a web page with complex mathematical equations. It became an official
standard for any browser till January 1997. Today it is practically supported by most of
the browsers.

HTML 4.01: HTML 4.01 version was released on December 1999, and it is a very stable
version of HTML language. This version is the current official standard, and it provides
added support for stylesheets (CSS) and scripting ability for various multimedia
elements.

HTML5 : HTML5 is the newest version of HyperText Markup language. The first draft of
this version was announced in January 2008. There are two major organizations one is
W3C (World Wide Web Consortium), and another one is WHATWG(Web Hypertext
Application Technology Working Group) which are involved in the development of HTML
5 version, and still, it is under development.

Features of HTML
1) It is a very easy and simple language. It can be easily understood and modified.

2) It is very easy to make an effective presentation with HTML because it has a lot of
formatting tags.

3) It is a markup language, so it provides a flexible way to design web pages along with
the text.

4) It facilitates programmers to add a link on the web pages (by html anchor tag), so it
enhances the interest of browsing of the user.

5) It is platform-independent because it can be displayed on any platform like Windows,
Linux, and Macintosh, etc.

6) It facilitates the programmer to add Graphics, Videos, and Sound to the web pages
which makes it more attractive and interactive.

7) HTML is a case-insensitive language, which means we can use tags either in lower-
case or upper-case.

HTML text Editors
o An HTML file is a text file, so to create an HTML file we can use any text editors.

o Text editors are the programs which allow editing in a written text, hence to create
a web page we need to write our code in some text editor.

o There are various types of text editors available which you can directly download,
but for a beginner, the best text editor is Notepad (Windows) or TextEdit (Mac).

o After learning the basics, you can easily use other professional text editors which
are, Notepad++, Sublime Text, Vim,VSCode etc.

o We will use Notepad and sublime text editor. Following are some easy ways to
create your first web page with Notepad, and sublime text.

HTML Editors
Notepad

Notepad++

VScode

Sublime text

HTML Execution

internet explorer

Microsoft Edge

Google Chrome

Mozella Firefox

HTML code with Notepad. (Recommended for Beginners)
Notepad is a simple text editor and suitable for beginners to learn HTML. It is available
in all versions of Windows, from where you easily access it.

Step 1: Open Notepad (Windows)

Step 2: Write code in HTML

Step 3: Save the HTML file with .htm or .html extension.

Step 4: Open the HTML page in your web browser.

To run the HTML page, you need to open the file location, where you have saved the file
and then either double-click on file or click on open with option

HTML code with Sublime Text-editor.

(Recommended after learning basics of HTML)
When you will learn the basics of HTML, then you can use some professional text editors,
which will help you to write an efficient and fast code. So to use Sublime Text editors,
first it needs to download and install from internet. You can easily download it from this
https://www.sublimetext.com/download link and can install in your PC. When installation
of Sublime text editor done then you can follow the simple steps to use it:

Step 1: Open Sublime Text editor(Windows 8):

To open Sublime Text editor go to Start screen ⤏ type Sublime Text⤏ Open it. To open a
new page press CTRL+N.

Step 2: Save the page before writing any code.

To save your page in Sublime Text press Ctrl+S or go to File option ⤏ save, to save a file
use extension .htm or .html. We recommend to save the file first then write the code
because after saving the page sublime text editor will give you suggestions to write code.

Step 3: Write the code in Sublime Text editor

Step 4: Open the HTML page in your Browser

To execute or open this page in Web browser just right click by mouse on sublime text
page and click on Open in Browser.

Building blocks of HTML
An HTML document consist of its basic building blocks which are:

o Tags: An HTML tag surrounds the
content and apply meaning to it. It is
written between < and > brackets.

o Attribute: An attribute in HTML
provides extra information about the
element, and it is applied within the
start tag. An HTML attribute
contains two fields: name & value.

o Elements: An HTML element is an
individual component of an HTML
file. In an HTML file, everything
written within tags are termed as
HTML elements.

Syntax
1. <tag name attribute_name= " attr_value"> content </ tag name>

Example

<!DOCTYPE html>

<html>

 <head>

 <title>The basic building blocks of HTML</title>

 </head>

 <body>

 <h2>The building blocks</h2>

 <p>This is a paragraph tag</p>

 <p style="color: red">The style is attribute of paragraph tag</p>

 The element contains tag, attribute and content

 </body>

</html>

HTML Tags
HTML tags are like keywords which defines that how web browser will format and
display the content. With the help of tags, a web browser can distinguish between an
HTML content and a simple content. HTML tags contain three main parts: opening tag,
content and closing tag. But some HTML tags are unclosed tags.

An HTML file must have some essential tags so that web browser can differentiate
between a simple text and HTML text. You can use as many tags you want as per your
code requirement.

o All HTML tags must be enclosed within < > these brackets.

o Every tag in HTML performs different tasks.

o If you have used an open tag <tag>, then you must use a close tag </tag> (except
some tags)

Syntax

<tag> content </tag>

Unclosed HTML Tags

Some HTML tags are not closed, for example br and hr.

 Tag: br stands for break line, it breaks the line of the code.

<hr> Tag: hr stands for Horizontal Rule. This tag is used to put a line across the webpage.

HTML Meta Tags

DOCTYPE, title, link, meta and style

HTML Text Tags

<p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, , , <abbr>, <acronym>, <address>, <bdo>,
<blockquote>, <cite>, <q>, <code>, <ins>, , <dfn>, <kbd>, <pre>, <samp>, <var> and

HTML Link Tags

<a> and <base>

HTML Image and Object Tags

, <area>, <map>, <param> and <object>

HTML List Tags

, , , <dl>, <dt> and <dd>

HTML Table Tags

table, tr, td, th, tbody, thead, tfoot, col, colgroup and caption

HTML Form Tags

form, input, textarea, select, option, optgroup, button, label, fieldset and legend

HTML Scripting Tags

script and noscript

HTML Attribute
o HTML attributes are special words which provide additional information about the

elements or attributes are the modifier of the HTML element.

o Each element or tag can have attributes, which defines the behaviour of that
element.

o Attributes should always be applied with start tag.

o The Attribute should always be applied with its name and value pair.

o The Attributes name and values are case sensitive, and it is recommended by W3C
that it should be written in Lowercase only.

o You can add multiple attributes in one HTML element, but need to give space
between two attributes.

Syntax

1. <element attribute_name="value">content</element>

Attributes Of Body Tag
The HTML <body> tag has several attributes that were previously used to control the
appearance of the page, including background color, text color, and link colors. However,
most of these attributes are now deprecated in favor of CSS, and are best avoided in
modern HTML development.

Here's a breakdown of some key <body> attributes and their modern usage:

Deprecated Attributes:

• background:

Used to set a background image for the document. Deprecated. Use the background-
image property in CSS instead.

• bgcolor:

Used to set the background color of the document. Deprecated. Use the background-
color property in CSS instead.

• text:

Used to set the color of the text within the document. Deprecated. Use the color property
in CSS instead.

• link:

Used to set the color of unvisited links. Deprecated. Use the color property for
the a:link pseudo-class in CSS instead.

• alink:

Used to set the color of active links (when the link is being clicked). Deprecated. Use
the color property for the a:active pseudo-class in CSS instead.

• vlink:

Used to set the color of visited links. Deprecated. Use the color property for
the a:visited pseudo-class in CSS instead.

Example 1 bgcolor and text attributes using color names

 <!DOCTYPE html>

<html>

<head>

</head>

<body bgcolor=”cyan” text=”blue”>

 <h1> This is Style attribute</h1>

 <p style="height: 50px; color: blue">It will add style property in element</p>

 <p style="color: red">It will change the color of content</p> </body> </html>

Example 2 bgcolor and text attributes using color codes
(htmlcolorcodes.com)

 <!DOCTYPE html>

<html>

<head>

</head>

<body bgcolor=” #59de32” text=” #053076”>

 <h1> This is Style attribute</h1>

 <p style="height: 50px; color: blue">It will add style property in element</p>

 <p style="color: red">It will change the color of content</p>

</body>

</html>

Example 3 Applying Background Image

 <!DOCTYPE html>

<html>

<head>

</head>

<body background=”d:\images\sardar1.jpg” text=”blue”>

 <h1> This is Style attribute</h1>

 <p style="height: 50px; color: blue">It will add style property in element</p>

 <p style="color: red">It will change the color of content</p>

</body>

</html>

Body Tag Modern Alternatives (CSS) Attributes
Instead of using the deprecated attributes, use CSS to style the <body> element and its
children:

CSS is even better Choice these days to apply all attributes universally and at one
attempt in HTML 5.0.

Example 4 Setting Up attributes Using CSS

 <!DOCTYPE html>

<html>
<head>
<style>

body {
 background-color: lightblue; /* Sets the background color */
 color: black; /* Sets the text color */
 background-image: url('your_image.jpg'); /* Sets the background image */
 a:link {
 color: blue; /* Sets the color of unvisited links */
 }
 a:visited {
 color: purple; /* Sets the color of visited links */
 }
 a:hover {
 color: red; /* Sets the color of links on hover */
 }
}

</style>

</head>
<body>

<h1>Hello world!</h1>
<p>Visit W3Schools.com!</p>
</body>

</html>

HTML Tag
The HTML Tag plays an important role in the web page to create an attractive

and readable web page. The font tag is used to change the color, size, and style of a

text and it was used in HTML4. The base font tag is used to set all the text to the same

size, color, and face.

Note: Font tag is not supported in HTML5.

<!DOCTYPE html>

<html>

<body>

 <p>This is sample paragraph</p>

 This paragrap style by font tag

</body>

</html>

Syntax

Font Attributes

Table of Content

• Font Size

• Font Type

• Font Color

Font Size

The Font size attribute is used to adjust the size of the text in the HTML document
using a font tag with the size attribute. The range of size of the font in HTML is from 1 to
7 and the default size is 3.

<!DOCTYPE html>

<html>

<body>

 GeeksforGeeks!

 GeeksforGeeks!

 GeeksforGeeks!

 GeeksforGeeks!

 GeeksforGeeks!

 GeeksforGeeks!

 GeeksforGeeks!</body></html>

Font Type

The Font type can be set by using face attribute with font tag in HTML document. But
the fonts used by the user need to be installed in the system first.

Example

<!DOCTYPE html>

<html>

<body>

 GeeksforGeeks!!

 GeeksforGeeks!!

 GeeksforGeeks!!

 GeeksforGeeks!!

 GeeksforGeeks!!

</body>

</html>

Font Color

The Font color is used to set the text color using a font tag with the color attribute in an
HTML document. Color can be specified either with its name or with its hex code.

Example

<!DOCTYPE html>

<html>

<body>

 GeeksforGeeks

 GeeksforGeeks

</body>

</html>

HTML - Formatting
HTML formatting defines the way of content representation on the webpage to improve
the readability, to give the semantic meaning, and to improve visual styling.

HTML formatting is done by using HTML physical and logical tags. In this chapter, we
will learn about the text appearance with HTML formatting.

Let's understand what are physical and logical tags:

• Physical Tags: These tags are used to give the visual appearance to the textual
content.

• Logical Tags: These tags are used to give logical and semantic meaning to the
textual content. There are a few logical tags that are used for screen readers,
but the impact of those tags is visible on the browsers.

Use of HTML Formatting

Without formatting, nothing looks good or soothing to our eyes. But HTML formatting is
not only for soothing the eye or making textual content attractive. There are few
reasons to do the HTML formatting.

HTML formatting is useful in many aspects:

• The appearance of any text provides a clear view of the content intent, such as
highlighting the keywords, putting meaningful information in the quotations,
underlining the main sentence, etc.

• Formatting helps search engines understand the content structure and is also
helpful for search engine optimization.

• Formatting improves the visual layout and improves the readability of the
content.

HTML Formatting Tags

The following table has a list of common HTML formatting tags that are used for text
formatting:

Tag Description Category

 This tag is used to make the text bold. Physical
Tag

<i> This tag is used to make the text italic. Physical
Tag

<big> This tag is used to make the text bigger. It is not supported in
HTML5.

Physical
Tag

<small> This tag is used to make the text smaller. Physical
Tag

<u> This tag is used to underline text. Physical
Tag

<strike> This tag is used to strike through text. It is not supported in
HTML5.

Physical
Tag

<tt> This tag is used to make text appear in teletype (monospace
font). It is not supported in HTML5.

Physical
Tag

 This tag is used to bold text and give it semantic importance. Logical
Tag

 This tag is used to italicize text and give it semantic
emphasis.

Logical
Tag

<sup> This tag is used to make superscript text (slightly above the
normal line).

Other Tag

<sub> This tag is used to make subscript text (slightly below the
normal line).

Other Tag

<ins> This tag is used to indicate that content has been added
(typically underlined).

Other Tag

 This tag is used to indicate that content has been deleted
(typically struck through).

Other Tag

<mark> This tag is used to highlight text with a yellow background. Other Tag

HTML Formatting Tags with Examples

The detailed explanation of each formatting tag with their examples is as follows:

HTML Tag

HTML tag is used for making the text bold; there is no logical aspect of this tag; it is
only used for visual impact.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Bold Text Example</title>

</head>

<body>

 <p>The following word uses a bold typeface.</p>

</body>

</html>

HTML Tag

HTML tag is used for making the text strong that has more importance, and
the text inside it is typically displayed in the bold.

Note: The tag makes the text bold for styling purposes only, while the tag
makes the text bold and also adds importance to the text within its content.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Bold Text Example</title>

</head>

<body>

 <p>The following word uses a strong typeface.</p>

</body>

</html>

HTML <i> Tag

Any content that is enclosed within the <i>...</i> element is displayed in italicized.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Italic Text Example</title>

</head>

<body>

 <p>The following word uses a <i>italicized</i> typeface.</p>

</body>

</html>

HTML Tag

HTML tag gives semantic meaning to the text contained within it and renders it in
italics on the browser.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Italic Text Example</title>

</head>

<body>

 <p>The following word uses a emphasized typeface.</p>

</body>

</html>

HTML <big> Tag

Any content that is enclosed within the <big>...</big> element is displayed one font size
larger than the rest of the text surrounding it.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Larger Text Example</title>

</head>

<body>

 <p>Hello Welcome to <big>Sardar Azeem 03135879331</big>.</p>

</body>

</html>

HTML <small> Tag

The content, which is enclosed within the <small>...</small> element, is displayed one
font size smaller than the rest of the text surrounding it.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Smaller Text Example</title>

</head>

<body>

 <p>Hello Welcome to <small>Sardar
Azeem 03135879331</small>.</p>

</body>

</html>

HTML <sup> Tag

Any content enclosed within the ^{...} element is written in superscript; the
font size used is the same size as the characters surrounding it but is displayed at half
the height of the surrounding characters, giving it a smaller and slightly raised
appearance compared to the rest of the text.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Superscript Text Example</title>

</head>

<body>

 <p>The following word uses a ^{superscript} typeface. </p>

</body>

</html>

HTML <sub> Tag

Any content of a _{...} element is written in subscript; the font size used is the
same as the characters surrounding it and is displayed half a character's height
beneath the other characters. It is typically used for writing things like chemical
formulas, where certain characters need to be displayed below the regular text line.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Subscript Text Example</title>

</head>

<body>

 <p>The following word uses a _{subscript} typeface. </p>

</body>

</html>

HTML <ins> Tag

Any content that is enclosed within the <ins>...</ins> element is displayed as inserted
text.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Inserted Text Example</title>

</head>

<body>

 <p>I want to drink cola <ins>wine</ins></p>

</body>

</html>

HTML Tag

Content that is enclosed within the ... element is displayed as deleted text.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Deleted Text Example</title>

</head>

<body>

 <p>Hello welcome to Madras <ins>Chennai</ins></p>

</body>

</html>

HTML <u> Tag

Any content enclosed within the <u>...</u> element is displayed with an underline.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Underlined Text Example</title>

</head>

<body>

 <p>The following word uses a <u>underlined</u> typeface.</p>

</body>

</html>

HTML <strike> Tag

Content that is enclosed within the <strike>...</strike> element is displayed with
strikethrough, which is a thin line through the text.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Strike Text Example</title>

</head>

<body>

 <p>The following word uses a <strike>strikethrough</strike> typeface.</p>

</body>

</html>

HTML <mark> Tag

HTML <mark> tag is used to mark or highlight text that is important for notation
purposes.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Strike Text Example</title>

</head>

<body>

 <p>The following word uses a <mark>strikethrough</mark> typeface.</p>

</body>

</html>

HTML <tt> Tag

Any content enclosed within the <tt>...</tt> element is written in monospaced font. Most
of the fonts are known as variable-width fonts because different letters are of different
widths (for example, the letter 'm' is wider than the letter 'i'). In a monospaced font,
however, each letter has the same width.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Monospaced Font Example</title>

</head>

<body>

 <p>The following word uses a <tt>monospaced</tt> typeface.</p>

</body>

</html>

HTML Paragraphs
HTML paragraphs are block-level elements that are used to structure and format text
content on a webpage. A paragraph is basically a collection of words and punctuation
together. It allows us to organize and present textual information in a coherent and
readable manner. The HTML <p> tag is used to create a paragraph element.

Reason to Use Paragraphs

Paragraphs typically create space above and below the text, separating it from
surrounding content. They can be styled using CSS to control aspects such as font size,
color, alignment, and spacing. In web development, paragraphs play a crucial role in
conveying information effectively, enabling clear communication, and enhancing the
overall user experience on a website.

Creating a Paragraph

To create a paragraph in HTML, use the <p> tag. Place text inside <p> and </p> that you
want to display as a paragraph on a webpage.

Syntax

<p>Text to display as a paragraph on the webpage</p>

Example of HTML Paragraph

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <p>Lorem ipsum odor amet, consectetuer adipiscing elit. Proin eros habitant
accumsan vulputate curae eu fusce vehicula.</p>

 <p>Laoreet sociosqu taciti iaculis cras leo nec litora. Nisi vehicula massa fusce justo
libero duis. Per condimentum vivamus nec elementum nullam sociosqu vel
scelerisque.</p>

 </body>

</html>

Line Breaks With Paragraphs

The
 tags are used to insert line breaks within a paragraph to control the text
layout.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Line Breaks With
Paragraphs</title>

</head>

<body>

 <p>This is a paragraph with a
 line
break. </p>

</body>

</html>

Example

<!DOCTYPE html>

<html>

<head>

 <title>Headings With Paragraphs</title>

</head>

<body>

 <h1>Main Heading</h1>

 <p> This is a paragraph beneath the main heading. </p>

</body>

</html>

Lists With Paragraphs

Lists can be incorporated within paragraphs for content organization.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Lists With Paragraphs</title>

</head>

<body>

 <p>This is a paragraph following an unordered list.</p>

 Item 1

 Item 2

</body>

</html>

Emphasis Within Paragraphs

Tags like and allow you to emphasize text within paragraphs.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Emphasis Within Paragraphs</title>

</head>

<body>

 <p> This is a paragraph with emphasized text. </p>

</body>

</html>

Links within Paragraphs

You can insert links within paragraphs using the <a> tag.

Example

<html>

<head>

 <title>Links within Paragraphs</title>

</head>

<body>

 <p>Visit our website here . </p>

</body>

</html>

Inline Styles Within Paragraphs

You can use the tag with inline styles to apply specific formatting.

Example

<html>

<head>

 <title>Inline Styles Within Paragraphs</title>

</head>

<body>

 <p>This is a blue text within a paragraph. </p>

</body>

</html>

Images Within Paragraphs

You can embed images within paragraphs using the tag.

Example

<html>

<head>

 <title>Images Within Paragraphs</title>

</head>

<body>

 <p> Here's an image: </p>

</body>

</html>

Superscript and Subscript Within Paragraphs

Use <sup> and <sub> tags to create superscript and subscript text.

Example

<html>

<head>

 <title>Superscript and Subscript Within Paragraphs</title>

</head>

<body>

 <p> H₂O is the chemical formula for water. 2³ equals 8.</p>

</body>

</html>

Abbreviations Within Paragraphs

The <abbr> tag helps define abbreviations or acronyms.

Example

<html>

<head>

 <title>Abbreviations within Paragraphs</title>

</head>

<body>

 <p> <abbr title="Hypertext Markup Language">HTML</abbr> is used for web
development.</p>

</body>

</html>

Citations Within Paragraphs

The <cite> tag specifies citations and references within paragraphs.

Example

<html>

<head>

 <title>Citations Within Paragraphs</title>

</head>

<body>

 <p> The book <cite>War and Peace </cite> is a classic novel. </p>

</body>

</html>

Styling Paragraph with CSS

The following are the different ways to style HTML paragraphs:

1. Applying CSS Directly to Paragraphs

You can apply CSS styles directly to the paragraphs by writting inline CSS using
the 'style' attribute with the <p> tag.

Example

<!DOCTYPE html>

<html>

 <head>

 </head>

 <body>

 <p style="font-size: 24px; color: #f40;">This is the first paragraph.</p>

 <p>This is the second paragraph.</p>

 <p style="font-size: 24px; background-color: #f40; color: #fff;">This is the third
paragraph.</p>

 </body>

</html>

2. Applying CSS on 'p' Element

You can apply CSS styles to all paragraphs within the HTML document by writing CSS
rules for the <p> tag.

<!DOCTYPE html>

<html>

 <head>

 <style>

 p {

 font-size: 22px;

 color: #f40;

 }

 </style>

 </head>

 <body>

 <p>This is the first paragraph.</p>

 <p>This is the second paragraph.</p>

 <p>This is the third paragraph.</p>

 </body>

</html>

3. Using CSS Class with Different Paragraphs

You can apply CSS styles to specific paragraphs by creating a CSS class and using it
with the different paragraphs. For this, use the 'class' attribute with the <p> tag.

<!DOCTYPE html>

<html>

 <head>

 <style>

 .special {

 font-size: 24px;

 color: #f40;

 }

 </style>

 </head>

 <body>

 <p class="special">This is the first paragraph.</p>

 <p>This is the second paragraph.</p>

 <p class="special">This is the third paragraph.</p>

 </body>

</html>

CSS provides extensive control over paragraph styles, allowing you to create visually
appealing and well-formatted text on your web page.

HTML - Headings
HTML headings define the hierarchy (levels) and structure of content on a webpage.
They create a visual hierarchy, with the highest-level heading, which is h1, indicating
the most important content or the main heading, and lower-level headings
like h2, h3, h4, etc. for subtopics.

Reason to use Headings

Headings are crucial for structuring content and providing a clear visual indication of
the beginning of new sections or topics. Properly structured headings enhance
readability and user experience on websites, ensuring that information is organized
and easy to navigate.

• Heading Impact on SEO: The well-organized headings help search engines to
understand the content structure and indexing.

• Highlighting Important Topics: The use of heading tags properly keeps the
content readable.

HTML Heading Tags

The headings are defined with headings tags (<h1> to <h6>). It is important to use
heading tags to show the content structure on a webpage. HTML has a different level of
heading tags. The hierarchy determines the importance of content and aids in creating
a clear information flow for both users and search engines.

Example

<!DOCTYPE html>

<html>

 <body>

 <h1>This is Heading 1 (H1 Tag)</h1>

 <h2>This is Heading 2 (H2 Tag)</h2>

 <h3>This is Heading 3 (H3 Tag)</h3>

 <h4>This is Heading 4 (H4 Tag)</h4>

 <h5>This is Heading 5 (H5 Tag)</h5>

 <h6>This is Heading 6 (H6 Tag)</h6>

 </body>

</html>

Hierarchical Structure of Heading Tags

Below is the list according to the hierarchy of the heading tags (most to least
significant) −

• The <h1> Tag − The top-level heading denotes the main topic or title of the entire
page.

• The <h2> Tag − Subheadings under <h1> represent major sections related to the
main topic. They provide a more specific context to the content.

• The <h3> to <h6> Tags − These tags are used for further subsections or nested
content within <h2> headings. They offer a deeper level of hierarchy for
organizing content within specific sections.

Examples of HTML Headings

In these examples, you will see the usage of all the heading tags to create different
types of headings and styling them using the CSS −

Headings Using <h1> to <h6> Tags

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Example of HTML Headings</title>

 </head>

 <body>

 <h1>Heading 1: Main Heading of Page</h1>

 <h2>Heading 2: Section</h2>

 <h3>Heading 3: Subsection</h3>

 <h4>Heading 4: Sub-subsection</h4>

 <h5>Heading 5: Lower-level heading</h5>

 <h6>Heading 6: Lowest-level heading</h6>

 </body>

</html>

Styling Headings With CSS

In the following example, we will apply the style such as font family, font color, font
size, etc. to the headings −

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Example of HTML Headings</title>

 <style>

 h1, h2, h3, h4, h5, h6{

 font-family: Verdana;

 }

 h1{

color: Red;

 font-size: 32px;

 }

 h2{

 color: Green;

 font-size: 30px;

 }

 </style>

 </head>

 <body>

 <h1>Heading 1: Main Heading of Page</h1>

 <h2>Heading 2: Section</h2>

 <h3>Heading 3: Subsection</h3>

 <h4>Heading 4: Sub-subsection</h4>

 <h5>Heading 5: Lower-level heading</h5>

 <h6>Heading 6: Lowest-level heading</h6>

 </body>

</html>

Using HTML Tags Within Heading Tags

HTML headings (h1 to h6) serve as the main titles and subheadings for content
organization.

The Tag

You can use the tag to apply inline styles or classes to specific portions of the
text within a heading. This allows for custom styling of text within the heading.

<!DOCTYPE html>

<html>

<head>

 <title>Using Tag</title>

</head>

<body>

 <h2>This is a blue word.</h2>

</body></html>

The <a>Tag for Links

To create a link within a heading, use the <a> tag. This is useful for headings that lead to
other pages or sections of your website.

<!DOCTYPE html>

<html>

<head>

 <title>Using <a> Tag for Links</title>

</head>

<body>

 <h1>Visit our website</h1>

</body>

</html>

The and Tags

These tags are used for emphasizing text within headings. The tag italicizes the
text, while makes it bold.

<!DOCTYPE html>

<html>

<head>

 <title>Using and Tags</title>

</head>

<body>

 <h3>This is emphasized and important text.</h3>

</body>

</html>

The <sup> and <sub> Tags

In heading, to include superscript or subscript text within a heading,
use <sup> and <sub>.

<!DOCTYPE html>

<html>

<head>

 <title>Using <sup> and <sub> Tags</title>

</head>

<body>

 <h4>The 10th floor is at the top.</h4>

 <h5>The chemical formula for water is H₂O.</h5>

</body>

</html>

The <abbr> Tag for Abbreviations

When you need to include an abbreviation or acronym in a heading, use the <abbr> tag.
It often provides a tooltip with the full meaning.

<!DOCTYPE html>

<html>

<head>

 <title>Using <abbr> Tag for Abbreviations</title>

</head>

<body>

 <h2>HTML stands for <abbr title="Hypertext Markup Language">HTML</abbr>.</h2>

</body>

</html>

The
 Tag for Line Breaks

Sometimes, you might want to create line breaks within a heading for better
formatting. The
 tag serves this purpose.

<!DOCTYPE html>

<html>

<head>

 <title>Using
 Tag for Line Breaks</title>

</head>

<body>

 <h3>This is the first line.
This is the second line.</h3>

</body>

</html>

The <mark> Tag

Use the <mark> tag to highlight specific text within a heading. It's often used to indicate
search results or selected portions of text.

<!DOCTYPE html>

<html>

<head>

 <title>Using <mark> Tag</title>

</head>

<body>

 <h1>Search for "<mark>important</mark>" information here.</h1>

</body>

</html>

Mistakes to be Avoided

Make sure we avoid the following mistakes while using the heading tag −

• Skipping Levels − Always follow the proper hierarchy (h1, h2, h3, etc.). Don't skip
levels.

• Overusing h1 − Reserve h1 for the main title; don't use it multiple times on a
page.

• Styling Overload − Avoid excessive styling; CSS should handle the aesthetics,
not headings.

HTML Phrase tag
The HTML phrase tags are special purpose tags, which defines the structural meaning
of a block of text or semantics of text. Following is the list of phrase tags, some of
which we have already discussed in HTML formatting.

o Abbreviation tag : <abbr>

o Acronym tag: <acronym> (not supported in HTML5)

o Marked tag: <mark>

o Strong tag:

o Emphasized tag :

o Definition tag: <dfn>

o Quoting tag: <blockquote>

o Short quote tag : <q>

o Code tag: <code>

o Keyboard tag: <kbd>

o Address tag: <address>

1. Text Abbreviation tag

This tag is used to abbreviate a text. To abbreviate a text, write text between <abbr> and
</abbr> tag.

Example

<p>An <abbr title = "Hypertext Markup language">HTML </abbr>language is used to c
reate web pages. </p>

2. Marked tag:

The content written between <mark> and </mark> tag will show as yellow mark on
browser. This tag is used to highlight a particular text.

Example

<p>This tag will <mark>highlight</mark> the text.</p>

3. Strong text:

This tag is used to display the important text of the content. The text written between
 and will be displayed as important text.

Example

<p>In HTML it is recommended to use lower-
case, while writing a code. </p>

4. Emphasized text

This tag is used to emphasize the text, and displayed the text in italic form. The text
written between and tag will italicized the text.

Example

<p>HTML is an easy to learn language.</p>

5. Definition tag:

When you use the <dfn> and </dfn> tags, it allow to specify the keyword of the content.
Following is the example to show how to definition element.

Example

<p><dfn>HTML </dfn> is a markup language. </p>

6. Quoting text:

The HTML <blockquote> element shows that the enclosed content is quoted from
another source. The Source URL can be given using the cite attribute, and text
representation of source can display using <cite> </cite>element.

Example

<blockquote cite="https://www.pictacademy.com/famous-
quotes/"><p>?The first step toward success is taken when you refuse to be a captive
 of the environment in which you first find yourself.?</p></blockquote>

 <cite>-Mark Caine</cite>

7. Short Quotations:

An HTML <q> </q> element defines a short quotation. If you will put any content
between <q> </q>, then it will enclose the text in double quotes.

Example

<p>Steve Jobs said: <q>If You Are Working On Something That You Really Care About,
 You Don't Have To Be Pushed. The Vision Pulls You.</q>?</p>

8. Code tags

The HTML <code> </code> element is used to display the part of computer code. It will
display the content in monospaced font.

Example

<p>First Java program</p>

 <p><code>class Simple{ public static void main(String args[]){

 System.out.println("Sardar Azeem"); }} </code>

 </p>

9. Keyboard Tag

In HTML the keyboard tag, <kbd>, indicates that a section of content is a user input from
keyboard.

Example

<p>Please press <kbd>Ctrl</kbd> + <kbd>Shift</kbd> + t<kbd></kbd> to restore page
on chrome.</p>

10. Address tag

An HTML <address> tag defines the contact information about the author of the content.
The content written between <address> and </address> tag, then it will be displayed in
italic font.

Example

<address> You can ask your queries by contact us on SardarAzeem@pict
academy.com

 You can also visit at:
58 S. Garfield Street. Villa Rica, GA 30187.

 </address>

HTML Anchor

HTML Hyperlinks

A hyperlink is a specific type of link that allows users to navigate from one web page
or resource to another by clicking on it. You can create hyperlinks using text or images
available on a webpage. A hyperlink is created using the HTML Anchor Tag ().

The Anchor (<a>) Tag

An anchor tag, or <a> tag, is a basic element that creates hyperlinks between two
pages. Anything which is written between the opening <a> and the closing tags
become clickable and when someone clicks on it, the linked page will be opened.

Syntax

Here is the syntax to create a hyperlinks in HTML:

Link Text

Creating Hyperlinks (Linking Webpages/Documents)

You can link other webpages or documents by creating the hyperlinking to specific
words, images, or any HTML element.

Syntax

Link Text

Example

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

</head>

<body>

 <p>Click following link</p>

 Tutorials Point

</body>

</html>

The "target" Attribute

The target attribute specifies the location where linked document is opened. Following
are the possible values of target attribute:

S.No. Option & Description

1 _blank

Opens the linked document in a new window or tab.

2 _self

Opens the linked document in the same frame.

3 _parent

Opens the linked document in the parent frame.

4 _top

Opens the linked document in the full body of the window.

5 targetframe

Opens the linked document in a named targetframe.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.tutorialspoint.com/">

</head>

<body>

 <p>Click any of the following links</p>

 Opens in New | Opens in Self | <a href="/html/index.htm"
target="_parent">Opens in Parent | Opens
in Body

</body>

</html>

Use of Base Path in Hyperlinks

When you link HTML documents related to the same website, it is not required to give a
complete URL for every link. You can get rid of it if you use <base> tag in your HTML
document header. This tag is used to give a base path for all the links. So your browser
will concatenate given relative path to this base path and will make a complete URL.

Example

Following example makes use of <base> tag to specify base URL and later we can use
relative path to all the links instead of giving complete URL for every link:

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.tutorialspoint.com/">

</head>

<body>

 <p>Click following link</p>

 HTML Tutorial

</body>

</html>

Linking to a Page Section

Linking to a section on the same page allows users to navigate directly to that section.
You can create a link in the same to a specific section by using the href attribute with
a #id value, where the #id targets an element on the page with a corresponding id

attribute.

Example

In the below code, we demonstrate the usage of the href attribute to navigate to a
different section within the same page. We provide #idofsection inside the href to
navigate sections of our need:

<!DOCTYPE html>

<html lang="en">

<head>

 <style>

 div {

 height: 900px;

 }

 </style>

</head>

<body>

 <h2>Sardar Azeem</h2>

 <div>

 <p>

 PICT Academy: Simply Easy Learning

 </p>

 Know More

 </div>

 <h2 id="about">Section 2</h2>

 <div>

 <p>

 Pict Academy is a learning platform

 providing Top Rated On Campus and Online Classes, paid premium courses,

 and eBooks. Learn the latest technologies and programming languages SQL,
MySQL, Python, C, C++, Java, Python, PHP, Machine Learning, data

 science, AI, Prompt Engineering and more.

 </p>

 </div>

</body>

</html>

Styling Hyperlinks (Setting Link Color)

You can set colors of your links, active links and visited links using link,
alink and vlink attributes of <body> tag.

Example

Save the following in test.htm and open it in any web browser to see how link,
alink and vlink attributes work.

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.pictacademy.com/">

</head>

<body alink="#54A250" link="#040404" vlink="#F40633">

 <p>Click following link</p>

 HTML Tutorial

</body>

</html>

Downloadable Links

HTML allows you to create downloadable links where you can create links to make
your PDF, DOC, or ZIP files downloadable. To create any link downloadable, you can use
the download attribute with the <a> tag and specify the downloadable file path in
the href attribute.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Downloadable Link Example</title>

</head>

<body>

 Download File

</body>

</html>

Custom File Name

You can also specify the filename for the downloaded file. To give a custom filename
the file, you need to provide it to the download attribute.

Here is an example:

Download File

File Download Dialog Box

Appearance of HTML anchor tag

An unvisited link is displayed underlined and blue.

A visited link displayed underlined and purple.

An active link is underlined and red.

Creating Image Links
To create an HTML image link, we need an tag and an anchor element. The
image element is used to display the image on the web page, and the anchor
element is used to specify the destination URL of the link.

Syntax

Here are some example codes that explain the usage of image links in HTML:

• Create Hyperlink for an Image

• Image Link with Tooltip

• Mouse-Sensitive Images

o Server-Side Image Maps

Client-Side Image Maps

Create Hyperlink for an Image

<!DOCTYPE html>

<html>

<head>

 <title>Image Hyperlink Example</title>

</head>

<body>

 <img src="/html/images/logo.png"

 alt="PICTACADEMY"

 border="0" />

</body>

</html>

Image Link with Tooltip

You can also define a tooltip for an image link; when someone moves the mouse
over the linked image, it will display a tooltip. To set the tooltip, you can set
the title attribute of the <a> tag.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Image Hyperlink Example</title>

</head>

<body>

 <img src="/html/images/logo.png"

 alt="Tutorials Point"

 border="0" />

</body>

</html>

Mouse-Sensitive Images

The HTML and XHTML standards provide a feature that lets us embed several
different links inside a single image. We can create different links on the single
image based on different coordinates available on the image.

Once the links are attached to all coordinates, clicking on the different parts of the
image redirects us to target documents. Such mouse-sensitive images are known
as image maps.

There are two ways to create image maps:

• Server-side image maps: This is enabled by the ismap attribute of the tag
and requires access to a server and related image-map processing applications.

• Client-side image maps: This is created with the usemap attribute of
the tag, along with corresponding <map> and <area> tags.

Server-Side Image Maps

In the server-side image maps, we simply put the image inside a hyperlink and use
the ismap attribute, which makes it a special image, and when the user clicks some
place within the image, the browser passes the coordinates of the mouse pointer
along with the URL specified in the <a> tag to the web server. The server uses the
mouse pointer coordinates to determine which document to deliver back to the
browser.

When ismap is used, the href attribute of the containing <a> tag must contain the
URL of a server application like a CGI or PHP script to process the incoming
request based on the passed coordinates.

The coordinates of the mouse position are screen pixels counted from the upper-
left corner of the image, beginning with (0,0). The coordinates, preceded by a
question mark, are added to the end of the URL.

Example

<!DOCTYPE html>

<html>

<head>

 <title>ISMAP Hyperlink Example</title>

</head>

<body>

 <p>

 Click on the Image to get its coordinates.

 </p>

 <img src="/images/logo.png"

 alt="PICTATD"

 ismap/>

</body>

</html>

Client-Side Image Maps

Client-side image maps are enabled by the usemap attribute of the tag and
defined by special <map> and <area> extension tags. The <map> along with <area>
tags define all the image coordinates and corresponding links. The <area> tag inside
the map tag specifies the shape and the coordinates to define the boundaries of
each clickable hotspot available on the image.

The image that is going to form the map is inserted into the page using the
tag as a normal image, except it carries an extra attribute called usemap.

Example

<!DOCTYPE html>

<html lang="en">

<body>

<h1>Welcome to our interactive map!</h1>

<p> Click on a region to visit the respective language page: </p>

 <map
name="langmap">

<area shape="rect" coords="0,0,180,165" alt="HTML" href="html/index.htm"
target="_blank" hreflang="en" />

<area shape="rect" coords="180,0,375,167" alt="JavaScript"
href="javascript/index.htm" target="_blank" hreflang="en" />

<area shape="rect" coords="0,166,180,338" alt="PHP" href="/php/index.htm"
target="_blank" hreflang="en" />

<area shape="rect" coords="180,165,375,338" alt="ReactJS" href="reactjs/index.htm"
target="_blank" hreflang="en" />

</map>

</body>

 </html>

 Email Links (mailto)

HTML email links allow users to click on a link and automatically open their default email
client with a new message composed to the specified email address.

This is done using the mailto: protocol in the href attribute of an <a> (anchor) tag.

You can also predefine the subject and body of the email using the mailto: protocol. This
is done by appending ?subject= and &body= to the email address. Spaces and special
characters in the subject and body should be URL-encoded. For example, spaces are
encoded as %20.

Syntax

name@email.com

Examples HTML Email Links

Following are some examples that illustrate usage of HTML Email link:

Create Email link using href

The following HTML code illustrates how to create an email link using the href attribute
of the <a> tag.

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Click to Send Mail

</body>

</html>

Define Subject and Body in Email Link

HTML also allows you to specify a default email subject as well as an email body along
with the email address to make it more specific.

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 <a
href="mailto:example@example.com?subject=Hello%20there&body=This%20is%20a%20p
redefined%20email%20body.">

 Click here to Send Mail

</body>

</html>

Define cc and bcc in Email Link

We can also use the cc and bcc parameters to add carbon copy and blind carbon copy
recipients, as shown in the below example:

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Send email with cc and bcc

</body>

</html>

Email Links for Multiple Recipients

It is also possible to add multiple recipients to the email link by separating them with
commas, as illustrated in the below HTML code.

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Send email to multiple recipients

</body>

</html>

Security Concerns

Adding an HTML email link to your webpage is straightforward, but it can expose your
email address to spam. Automated programs, known as email harvesters, can scan web
pages for email addresses and add them to spam lists. This can result in a significant
increase in unwanted emails

HTML - Images
HTML images provide visual content for web pages, enhancing user experiences and
conveying information. They can be photographs, graphics, icons, or illustrations.

HTML offers various elements for embedding, manipulating, and controlling images,
contributing to the aesthetics and functionality of websites. Understanding image tags,
attributes, and responsive design principles is essential for effective web development.

HTML Image Syntax

Here,

• src: The src attribute defines the path of the image (image URL).

• alt: The alt attribute defines the alternate text; if there is a broken link to the image
path, the alternate text displays on the webpage.

• width and height: The width and height attribute define the height and width for
the image.

Insert Image

You can insert (embed) an image on the webpage using the tag with
the src attribute, which is a required attribute to define the image path.

Syntax

Use the following syntax to insert an image using the tag:

Example

<DOCTYPE html>

<html>

<head>

 <title>Example of HTML Image (Insert on the webpage)</title>

</head>

<body>

 <h1>Example of HTML Image (Insert on the webpage)</h1>

</body>

</html>

Set Image Location

Image location (path) must be clearly defined in the src attribute. You can follow the
absolute path, which starts with root directory (/), then directory name (if any), and then
image name with its extension.

Example

For example, if we have an image named "test.png" and it is stored in the "images" folder,
which is in the "html" folder on the root directory. You can simply use an image path like
"/html/images/test.png".

<!DOCTYPE html>

<html>

<head>

 <title>Using Image in Webpage</title>

</head>

<body>

</body>

</html>

Set Image Width and Height

You can set image width and height based on your requirements
using width and height attributes. You can specify the width and height of the image in
terms of either pixels or a percentage of its actual size.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Set Image Width and Height</title>

</head>

<body>

 <p>Setting image width and height</p>

</body>

</html>

Bordered Image

You can specify the border and its thickness in terms of pixels using the border attribute.
A thickness of 0 means there is no border around the picture.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Set Image Border</title>

</head>

<body>

 <p>Setting image Border</p>

</body>

</html>

Image Alignment

By default, the image will align at the left side of the page, but you can use
the align attribute to set it in the center or right.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Set Image Alignment</title>

</head>

<body>

 <p>Setting image Alignment</p>

</body>

</html>

Animated Images

You can also use animated images (having .gif extensions) on the webpages. There is no
specific attribute required to show animated images; you can simply set the path of the
animated image (.gif) in the src attribute.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Using Animated Images in HTML</title>

</head>

<body>

 <h1>Using Animated Images in HTML</h1>

</body>

</html>

Responsive Images

You can also make the images responsive, which will automatically adjust their size
based on the devices screen size and resolution. The following are the methods to make
images responsive:

1. Using CSS

Using CSS, you can set the width of the image to 100%, which allows the image to scale

proportionally to its parent container.

<img src="/html/images/test.png" alt="Responsive Image" style="width: 100%; height:
auto;"/>

2. Using the <picture> Tag

You can also display different images in different sizes or resolutions by using
the <picture> tag, which is useful when you want to display different images based on
the device.

<picture>

 <source media="(min-width: 800px)" srcset="image_path_1">

 <source media="(max-width: 799px)" srcset="image_path_2">

</picture>

Example

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Responsive Image Example</title>

 <style>

 img {

 width: 100%;

 height: auto;

 }

 </style>

</head>

<body>

 <h1>Responsive Image Example</h1>

</body>

</html>

Supported Image Formats

The following table shows the supported image formats in the HTML tag:

Image
Format

Image Format
Name

Transparency
Support

Animation
Support

File
Extensions

JPEG/JPG Joint Photographic
Experts Group

No No .jpg, .jpeg

PNG Portable Network
Graphics

Yes No .png

GIF Graphics
Interchange
Format

Yes Yes .gif

SVG Scalable Vector
Graphics

Yes No .svg

WebP Web Picture
format

Yes Yes .webp

BMP Bitmap Image File No No .bmp

ICO Icon File Yes No .ico

HTML - Text Links

HTML Hyperlinks

A hyperlink is a specific type of link that allows users to navigate from one web page or
resource to another by clicking on it. You can create hyperlinks using text or images
available on a webpage. A hyperlink is created using the HTML Anchor Tag ().

The Anchor (<a>) Tag

An anchor tag, or <a> tag, is a basic element that creates hyperlinks between two pages.
Anything which is written between the opening <a> and the closing tags become
clickable and when someone clicks on it, the linked page will be opened.

Syntax

Link Text

Creating Hyperlinks (Linking Webpages/Documents)

You can link other webpages or documents by creating the hyperlinking to specific
words, images, or any HTML element.

Syntax

Link Text

Example

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

</head>

<body>

 <p>Click following link</p>

 Tutorials Point

</body>

</html>

The "target" Attribute

The target attribute specifies the location where linked document is opened. Following
are the possible values of target attribute:

S.No. Option & Description

1 _blank

Opens the linked document in a new window or tab.

2 _self

Opens the linked document in the same frame.

3 _parent

Opens the linked document in the parent frame.

4 _top

Opens the linked document in the full body of the window.

5 targetframe

Opens the linked document in a named targetframe.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.tutorialspoint.com/">

</head>

<body>

 <p>Click any of the following links</p>

 Opens in New | Opens in Self | <a href="/html/index.htm"
target="_parent">Opens in Parent | Opens in
Body

</body>

</html>

Use of Base Path in Hyperlinks

When you link HTML documents related to the same website, it is not required to give a
complete URL for every link. You can get rid of it if you use <base> tag in your HTML
document header. This tag is used to give a base path for all the links. So your browser
will concatenate given relative path to this base path and will make a complete URL.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.tutorialspoint.com/">

</head>

<body>

 <p>Click following link</p>

 HTML Tutorial

</body>

</html>

Linking to a Page Section

Linking to a section on the same page allows users to navigate directly to that section.
You can create a link in the same to a specific section by using the href attribute with
a #id value, where the #id targets an element on the page with a corresponding id
attribute.

Example

<!DOCTYPE html>

<html lang="en">

<head>

 <style>

 div {

 height: 900px;

 }

 </style>

</head>

<body>

 <h2>Ed-Tech</h2>

 <div>

 <p>

 Tutorialspoint: Simply Easy Learning

 </p>

 Know More

 </div>

 <h2 id="about">Section 2</h2>

 <div>

 <p>

 Tutorials Point is an online learning platform

 providing free tutorials, paid premium courses,

 and eBooks. Learn the latest technologies and

 programming languages SQL, MySQL, Python, C,

 C++, Java, Python, PHP, Machine Learning, data

 science, AI, Prompt Engineering and more.

 </p>

 </div>

</body>

</html>

Styling Hyperlinks (Setting Link Color)

You can set colors of your links, active links and visited links using link,
alink and vlink attributes of <body> tag.

Example

<html>

<head>

 <title>Hyperlink Example</title>

 <base href="https://www.tutorialspoint.com/">

</head>

<body alink="#54A250" link="#040404" vlink="#F40633">

 <p>Click following link</p>

 HTML Tutorial

</body>

</html>

Downloadable Links

HTML allows you to create downloadable links where you can create links to make your
PDF, DOC, or ZIP files downloadable. To create any link downloadable, you can use the
download attribute with the <a> tag and specify the downloadable file path in
the href attribute.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Downloadable Link Example</title>

</head>

<body>

 Download File

</body>

</html>

Custom File Name

You can also specify the filename for the downloaded file. To give a custom filename the
file, you need to provide it to the download attribute.

Here is an example:

Download
File

Creating Image Links
To create an HTML image link, we need an tag and an anchor element. The image
element is used to display the image on the web page, and the anchor element is used
to specify the destination URL of the link.

Here, the href attribute of <a> element contains the destination link and src attribute
of tag contains the path of image.

Syntax

Examples of HTML Image Links

• Create Hyperlink for an Image

• Image Link with Tooltip

• Mouse-Sensitive Images

o Server-Side Image Maps

o Client-Side Image Maps

Create Hyperlink for an Image

In the following example, we are using an image as a hyperlink. If you execute the below
code, an image will be displayed, and if we click on it, the page will redirect to the home
page of Tutorials Point.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Image Hyperlink Example</title>

</head>

<body>

 <img src="/html/images/logo.png"

 alt="Tutorials Point"

 border="0" />

</body>

</html>

Image Link with Tooltip

You can also define a tooltip for an image link; when someone moves the mouse over
the linked image, it will display a tooltip. To set the tooltip, you can set the title attribute of
the <a> tag.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Image Hyperlink Example</title>

</head>

<body>

 <img src="/html/images/logo.png"

 alt="Tutorials Point"

 border="0" />

</body>

</html>

Mouse-Sensitive Images

The HTML and XHTML standards provide a feature that lets us embed several different
links inside a single image. We can create different links on the single image based on
different coordinates available on the image.

Once the links are attached to all coordinates, clicking on the different parts of the image
redirects us to target documents. Such mouse-sensitive images are known as image
maps.

There are two ways to create image maps:

• Server-side image maps: This is enabled by the ismap attribute of the tag
and requires access to a server and related image-map processing applications.

• Client-side image maps: This is created with the usemap attribute of
the tag, along with corresponding <map> and <area> tags.

Server-Side Image Maps

In the server-side image maps, we simply put the image inside a hyperlink and use
the ismap attribute, which makes it a special image, and when the user clicks some
place within the image, the browser passes the coordinates of the mouse pointer along
with the URL specified in the <a> tag to the web server. The server uses the mouse
pointer coordinates to determine which document to deliver back to the browser.

When ismap is used, the href attribute of the containing <a> tag must contain the URL of
a server application like a CGI or PHP script to process the incoming request based on
the passed coordinates.

The coordinates of the mouse position are screen pixels counted from the upper-left
corner of the image, beginning with (0,0). The coordinates, preceded by a question mark,
are added to the end of the URL.

Example

<!DOCTYPE html>

<html>

<head>

 <title>ISMAP Hyperlink Example</title>

</head>

<body>

 <p>

 Click on the Image to get its coordinates.

 </p>

 <img src="/images/logo.png"

 alt="Tutorials Point"

 ismap/>

</body>

</html>

Client-Side Image Maps

Client-side image maps are enabled by the usemap attribute of the tag and
defined by special <map> and <area> extension tags. The <map> along with <area> tags
define all the image coordinates and corresponding links. The <area> tag inside
the map tag specifies the shape and the coordinates to define the boundaries of each
clickable hotspot available on the image.

The image that is going to form the map is inserted into the page using the tag
as a normal image, except it carries an extra attribute called usemap.

On running the below code, an image with clickable areas will be displayed. If you click
on one of the area, you will be redirected to the tutorial of that part.

To know how the value of the coords attribute is calculated, you can visit the explanation
of coords attribute.

Example

<!DOCTYPE html>

<html lang="en">

<body>

 <h1>Welcome to our interactive map!</h1>

 <p>

 Click on a region to visit the

 respective language page:

 </p>

 <img src="/html/images/lang.jpg"

 usemap="#langmap"

 alt="language Map" />

 <map name="langmap">

 <area shape="rect"

 coords="0,0,180,165"

 alt="HTML"

 href="html/index.htm"

 target="_blank"

 hreflang="en" />

 <area shape="rect"

 coords="180,0,375,167"

 alt="JavaScript"

 href="javascript/index.htm"

 target="_blank"

 hreflang="en" />

 <area shape="rect"

 coords="0,166,180,338"

 alt="PHP"

 href="/php/index.htm"

 target="_blank" hreflang="en" />

 <area shape="rect"

 coords="180,165,375,338"

 alt="ReactJS"

 href="reactjs/index.htm"

 target="_blank"

 hreflang="en" />

 </map>

</body>

</html>

Coordinate System in HTML Images

Shape Coordinates Description

Rectangle x1 , y1 , x2 , y2 Where x1 and y1 are the coordinates of the upper left
corner of the rectangle; x2 and y2 are the coordinates of
the lower right corner.

Circle xc , yc , radius Where xc and yc are the coordinates of the center of the
circle, and radius is the circle's radius. A circle centred at
200,50 with a radius of 25 would have the attribute
coords="200,50,25".

Polygon x1 , y1 , x2 , y2 ,
x3 , y3 , ... xn ,
yn

The various x-y pairs define vertices (points) of the
polygon, with a "line" being drawn from one point to the
next point. A diamond-shaped polygon with its top point at
20,20 and 40 pixels across at its widest points would have
the attribute coords="20,20,40,40,20,60,0,40".

Email Links (mailto)
HTML email links allow users to click on a link and automatically open their default email
client with a new message composed to the specified email address.

This is done using the mailto: protocol in the href attribute of an <a> (anchor) tag.

You can also predefine the subject and body of the email using the mailto: protocol. This
is done by appending ?subject= and &body= to the email address. Spaces and special
characters in the subject and body should be URL-encoded. For example, spaces are
encoded as %20.

Syntax

name@email.com

Examples HTML Email Links

Create Email link using href

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Click to Send Mail

</body>

</html>

Define Subject and Body in Email Link

HTML also allows you to specify a default email subject as well as an email body along
with the email address to make it more specific.

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 <a
href="mailto:example@example.com?subject=Hello%20there&body=This%20is%20a%20p
redefined%20email%20body.">

 Click here to Send Mail

</body>

</html>

Define cc and bcc in Email Link

We can also use the cc and bcc parameters to add carbon copy and blind carbon copy
recipients, as shown in the below example:

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Send email with cc and bcc

</body>

</html>

Email Links for Multiple Recipients

It is also possible to add multiple recipients to the email link by separating them with
commas, as illustrated in the below HTML code.

<!DOCTYPE html>

<html>

<body>

 <p>

 Creating an HTML Email Link

 </p>

 Send email to multiple recipients

</body>

</html>

HTML - <marquee> Tag
HTML <marquee> tag is used to create auto scrolling or moveable element within
webpage.

If we place any content inside this tag then that element will slide from right to left by
default on it's own, but we can change the direction and axis through the attribute. This
tag is now deprecated tag but supported by major browsers till now, we recommend you
to use JavaScript and CSS to create this effect.

Syntax

<marquee>

 ...

</marquee>

Attribute

HTML marquee tag supports Global and Event attributes of HTML. Accept some specific
attributes as well which is listed below.

Attribute Value Description

width pixels Specifies the width of the marquee. This
can be a value like 10 or 20% etc.

height pixels Specifies the height of the marquee. This
can be a value like 10 or 20%
etc.(Deprecated)

direction up
down
left
right

Specifies the direction in which marquee
should scroll.(Deprecated)

behavior scroll
slide
alternate

Specifies the type of scrolling of the
marquee.(Deprecated)

scrolldelay value Specifies how long to delay between
each jump.(Deprecated)

scrollamount value Specifies the speed of marquee
element.(Deprecated)

loop number Specifies how many times to loop. The
default value is INFINITE, which means
that the marquee loops
endlessly.(Deprecated)

bgcolor color_name or color_code Specifies background color in terms of
color name or color hex
value.(Deprecated)

hspace pixels Specifies horizontal space around the
marquee.(Deprecated)

vspace pixels Specifies vertical space around the
marquee.(Deprecated)

Methods

Methods are used to perform some particular task on any element. Below listed method
can be used on <marquee> element.

Method Description

start() This method is used to start the scrolling of the <marquee> element.

stop() This method is used to stop the scrolling of the <marquee> element.

Event Handlers

Event Handlers are used to trigger or activate taske based on the behavior of the
element. Below listed event handlers can be used on <marquee> element.

Event
Handlers

Description

onbounce This will trigger when the scrolling reaches to the end, but
applicable only, when the behavior is set to alternate.

onfinish This will trigger when the scrolling completed a loop, but
applicable only, when the loop is set to a genuine number.

onstart This will trigger when the scrolling start.

Examples of HTML marquee Tag

<!DOCTYPE html>

<html>

<head>

 <title>HTML marquee Tag</title>

</head>

<body>

 <!-- Marquee Element Default Scrollong from right to left -->

 <marquee>

 <h2>Tutorialspoint: Simply Easy Learning</h2>

 </marquee>

</body>

</html>

Implementing Horizontal Scrolling Effect

<!DOCTYPE html>

<html>

<head>

 <title>HTML marquee Tag</title>

</head>

<body>

 <h3>From right to left Scrolling</h3>

 <marquee height="100"direction="left">Tutorialpoint</marquee>

 <h3>From left to right Scrolling</h3>

 <marquee height="100"direction="right">Tutorialpoint</marquee>

</body>

</html>

Implementing Vertical Scrolling Effect

<!DOCTYPE html>

<html>

<head>

 <title>HTML marquee Tag</title>

</head>

<body>

 <h3>From down to up Scrolling</h3>

 <marquee height="100"direction="up">Tutorialpoint</marquee>

 <h3>From up to down Scrolling</h3>

 <marquee height="100"direction="down">Tutorialpoint</marquee>

</body>

</html>

Using all attributes on marquee Tag

<!DOCTYPE html>

<html>

<head>

<title>HTML marquee Tag</title>

</head>

<body>

<h2>Default Marquee Element</h2>

<marquee>

<p>Tutorialspoint: Simply Easy Learning</p>

 </marquee>

<h2>Setting width, Height and bgcolor on Marquee Element</h2>

 <marquee width="50%" height="25%" bgcolor="lightgray">

<p>Tutorialspoint: Simply Easy Learning</p>

</marquee>

<h2>Setting Behaviour Marquee Element</h2>

<marquee behavior="alternate">

<p>Tutorialspoint: Simply Easy Learning</p>

</marquee>

<h2>Setting Speed on Marquee Element</h2>

<marquee scrollamount="10">

<p>Tutorialspoint: Simply Easy Learning</p>

</marquee>

<h2>Setting delay time on Marquee Element</h2>

<marquee scrolldelay="600">

<p>Tutorialspoint: Simply Easy Learning</p>

</marquee>

</body> </html>

HTML - Block and Inline Elements
HTML block elements are used to create the logical and semantic layout of a web page.
They help to organize the content into meaningful sections and make it easier for
browsers, search engines, and site visitors to understand the structure and meaning of
different parts of the web page. Inline elements are used to make useful block elements,
like adding anchor links.

There are various tags that you can use to create blocks, such as <div>, <p>, <table>, and
so on.

All the HTML elements can be categorized into two categories:

• Block-level Elements

• Inline Elements

HTML Block-level Elements

Block-level elements start on a new line, and anything that follows them appears on the
next line. These elements may contain margins to add some space before and after.
These elements take up the full width of their parent elements by default; you may set
their width by using the CSS width property.

List of HTML Block-level Elements

HTML Block Elements

<address> <article> <aside> <blockquote> <canvas>

<dd> <div> <dl> <dt> <fieldset>

<figcaption> <figure> <footer> <form> <h1> - <h6>

<header> <hr> <main> <nav>

<noscript> <p> <pre> <section>

<table> <tfoot> <video>

Example of Block-level Elements

The following example demonstrates the block-level elements. Here, we are using one
heading and two paragraphs separated by a horizontal line.

<!DOCTYPE html>

<html>

<head>

 <title>HTML Block Level Elements</title>

</head>

<body>

 <h3>HTML Block Level Elements</h3>

 <p>

 This line will appear in the next line

 after Heading.

 </p>

 <hr />

 <p>

 This line will appear after Horizontal

 Line.

 </p>

</body>

</html>

HTML Inline Elements

Inline elements can appear within the same line and do not start a new line on their own.

List of HTML Inline Elements

HTML Inline Elements

<a> <abbr> <acronym> <bdo>

<big>
 <button> <cite> <code>

<dfn> <i> <input>

<kbd> <label> <map> <object> <output>

<q> <samp> <script> <select> <small>

 <sub > <sup> <textarea>

<time> <tt> <var>

Example of Inline Elements

The following example demonstrates inline elements. Here, we are making the
paragraph's text bold and italic using inline emelents and <i> −

<!DOCTYPE html>

<html>

<head>

 <title>HTML inline Element</title>

</head>

<body>

 <h3>Inline Elements in HTML</h3>

 <!-- Using inline element -->

 <p>This paragraph is bold. </p>

 <!-- Using <i> inline element -->

 <p>This is an <i>italic</i> paragraph.</p>

</body>

</html>

Grouping Block and Inline Elements

Block-level and inline elements can be grouped using the <div> tag. The <div> tag is a
block-level element that plays a big role in grouping various other HTML tags and
applying CSS to groups of elements.

Example

<!DOCTYPE html>

<html>

<head> <title>HTML div Tag</title> </head>

<body>

<!-- First group of tags -->

<div style="background-color:yellow">

<h4>This is first group</h4>

<p>Following is a list of vegetables</p>

Beetroot

Ginger

Potato

Radish

</div>

<!-- Second group of tags -->

<div style="background-color:cyan">

<h4>This is second group</h4>

<p>Following is a list of fruits</p>

Apple

Banana

Mango

Strawberry

</div>

</body> </html>

HTML Lists
HTML lists are group or collection of items. These items can be both organized and
unorganized depending on the requirement. They help in organizing, structuring, and
presenting information to make it more user-friendly, readable, and accessible. Sample
lists are shown below. −

Unordered lists

Unordered lists display lists of items that are not in a specific order. The unordered lists
are marked with bullet points. To create an unordered list, the tag is used along with
the tag. Here, the tag specifies the list items.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 HTML

 CSS

 JavaScript

 Java

 JavaFX

</body>

</html>

Ordered Lists

Ordered lists are lists of items that are in a specific order. The ordered lists are marked
with numbers by default; you can change the numbers into alphabets, roman numbers,
etc. by using the type attribute or the CSS list-style-type property.

To create an ordered list, the tag is used along with the tag, where specifies
the list items.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 HTML

 CSS

 JavaScript

 Java

 JavaFX

</body>

</html>

Definition Lists

Definition lists are lists of items with their corresponding descriptions. The definition
lists are created by using the <dl>, <dt>, and <dd> tags. Where the <dl> tag specifies
the "definition list", the <dt> tag specifies the "definition term", and the <dd> tag specifies
the "definition description".

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML List</title>

</head>

<body>

 <h2>Example of HTML List</h2>

 <dl>

 <dt>HTML</dt>

 <dd>HyperText markup languague</dd>

 <dt>CSS</dt>

 <dd>Cascading Style Sheet</dd>

 <dt>JS</dt>

 <dd>JavaScript</dd>

 </dl>

</body>

</html>

Nested Lists

A list created within another list is known as a nested list. HTML also allows nesting of
lists within one another to generate complex document structures.

Example

In the following example, we are nesting an unordered list within an ordered list:

<!DOCTYPE html>

 <html>

<head>

<title>HTML List</title>

</head>

<body>

<h2>Example of HTML Nested List</h2>

Item One

Item Two

Subitem A

Subitem B

Item Three

</body>

</html>

Grouping Lists Inside <div> Tag

To enhance styling and layout, lists are often wrapped inside the <div> elements. This
grouping aids in applying consistent styles and creating visually appealing list
structures.

Example

<!DOCTYPE html>

<html> <head>

<title>HTML List</title>

</head>

<body>

<h2>Grouping of HTML List elements with div tag</h2>

 <div>

<p>First List</p>

Item One

Item Two

</div>

<div>

<p>Second List</p>

Item Three

Item Four

</div>

</body>

</html>

Styling Lists

Lists can be styled using CSS to enhance visual presentation. Custom styles can be
applied to list items, creating unique and visually appealing designs. For this, we use
the <style> tag, which is a way of specifying internal CSS.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML List</title>

<style>

li { font-size: 16px; }

div { color: red; }

</style>

</head>

<body>

<h2>HTML List with CSS</h2>

<div>

<p>First List</p>

Item One

Item Two

</div>

<div>

<p>Second List</p>

Item Three

Item Four </div> </body> </html>

HTML Lists Marker Types

CSS allows customization of marker types for list items. To do so, we use the CSS list-
style-type property, which can be set to change markers to circles, squares, or other
symbols.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML List</title>

<style>

li { font-size: 16px; list-style-type: square; }

</style>

</head>

<body>

<h2>HTML list-style-type Property</h2>

<div>

<p>First List</p>

Item One

Item Two

 <

/div>

<div>

<p>Second List</p>

Item Three

Item Four

</div>

</body>

</html>

Unordered HTML Lists
An unordered list is a collection of list items that do not have a specific order or
sequence and are marked with the bullets. An HTML unordered list is created by the
tag, where each list item is defined by the tag.

This type of list is used for describing a particular service or product, as it does not
require any order to be followed.

Creating Unordered Lists

To create an unordered list in HTML, we use the tag and nest tags inside it. Each
 element represents one item in the list. By default, the browser will automatically
display disc bullet points for each item. However, we can change this bullet style using
the type attribute on the element.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Unordered List</title>

</head>

<body>

 Beetroot

 Ginger

 Potato

 Radish

 </body></html>

HTML Unordered List - Specifying List Marker

The type attribute for the tag is used to specify the type of bullet for the unordered
list in HTML. By default, disc bullet type is used. But we can change this with the help of
the following options:

S.No Value & Description

1 disc

It is the default type of marker.

2 square

List items will be displayed with a square marker.

3 circle

It will set the marker to a hollow circle.

Disc Marker

<!DOCTYPE html>

<html>

<head>

 <title>HTML Unordered List</title>

</head>

<body>

 <p>An unordered list with default disc marker:</p>

 <ul type="disc">

 Apple

 Guava

 Carrot

 Orange

</body>

</html>

Square Marker

<!DOCTYPE html>

<html>

<head>

 <title>HTML Unordered List</title>

</head>

<body>

 <p>An unordered list with square marker:</p>

 <ul type="square">

 Nuts

 Oats

 Eggs

 Dates

</body>

</html>

Circle Marker

<!DOCTYPE html>

<html>

<head>

 <title>HTML Unordered List</title>

</head>

<body>

 <p>An unordered list with hollow circle marker:</p>

 <ul type="circle">

 Rice

 Pulses

 Flour

 Beans

</body>

</html>

HTML Unordered List Without Bullets

You can also display the list items of an unordered list without showing the bullets. To
display an unordered list without bullets, define the "none" to the list-style-
type property.

Syntax

<ul style="list-style-type: none">

 Item in list...

 Item in list...

 Item in list...

Example

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

<body>

 <ul style="list-style-type: none">

 Abdul

 Jason

 Yadav

</body>

/html>

Styling Unordered HTML Lists

Styling an unordered list () using CSS allows for customization of the list's
appearance, including modifying bullet points, spacing, and overall design.

Example

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Styled Unordered List</title>

 <style>

 ul {

 list-style-type: square;

 /* Custom bullet type */

 padding: 0;

 /* Removes default padding */

 }

 li {

 margin-bottom: 8px;

 /* Adds spacing between list items */

 background-color: #f0f0f0;

 /* Background color */

 border: 1px solid #ccc;

 /* Border */

 padding: 8px;

 /* Padding inside each list item */

 transition: background-color 0.3s;

 /* Smooth transition effect */

 }

 li:hover {

 background-color: #e0e0e0;

 /* Change background on hover */

 }

 </style>

</head>

<body>

 Item 1

 Item 2

 Item 3

</body>

</html>

Nested Unordered Lists

HTML allows nesting of lists; you can create nested unordered lists to display a list of
items inside an item of the outer list element.

Example

<!DOCTYPE html>

<html>

<head> <title>Nested Unordered Lists</title>

</head>

<body>

<h2>Example of Nested Unordered Lists</h2>

Fruits

Apple

Banana

Orange

Vegetables

Carrot

Broccoli

Spinach

Dairy

Milk

Cheese

Yogurt

</body>

</html>

Ordered HTML Lists
An ordered list is a collection of items that have a specific order or sequence. HTML
ordered list is created by tag where each list item is defined by the tag.

This type of ordered list is used to show the list items, where they are marked with an
ordered numbered list, such as the steps of a recipe, the ranking of a leaderboard, or
the chronological order of events as shown in the below figure:

Creating Ordered Lists

To create an ordered list in HTML, we use the tag and nest tags inside it. Each
 element represents one item in the list. The numbering starts with 1 and is
incremented by one for each successive ordered list element tagged with . Like an
unordered list, it also allows us to change the numbering style using the type attribute
of the element.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 Beetroot

 Ginger

 Potato

 Radish

</body>

</html>

HTML Ordered List - The type Attribute

Thetype attribute for the tag is used to specify the type of marker for the ordered list
in HTML. By default, the type of list numbering is numbers starting with 1, 2, 3, and so on.
You can change the type of numbers by using any of the values given below:

S.No Value & Description

1 1

It is the default type of marker.

2 I

List items will be displayed with roman number marker.

3 A

It will set the marker to upper case alphabets.

4 a

It sets the marker to lower case alphabets.

Ordered List With Numbers

The following example demonstrates the ordered lists with numbers type marker:

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <p>Ordered list with counting numbers:</p>

 <ol type="1">

 Beetroot

 Ginger

 Potato

 Radish

</body>

</html>

Ordered List With Uppercase Roman

The following example demonstrates the ordered lists with uppercase roman numbers
type marker:

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <p>Ordered list with uppercase roman numbers:</p>

 <ol type="I">

 Aman

 Vivek

 Shrey

 Ansh </body></html>

Ordered List With Lowercase Roman

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <p>Ordered list with lowercase roman numbers:</p>

 <ol type="i">

 Aman

 Vivek

 Shrey

 Ansh

</body>

</html>

Ordered List With Uppercase Alphabets

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <p>Ordered list with uppercase alphabets:</p>

 <ol type="A">

 Bus

 Train

 Plane

 Boat

</body>

</html>

Ordered List With Lowercase Alphabets

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <p>Ordered list with lowercase alphabets:</p>

 <ol type="a">

 Bus

 Train

 Plane

 Boat

</body>

</html>

HTML Ordered List - The start Attribute

By default, the numbering starts with 1, but you can change it by using

the start attribute with the tag. The style attribute defines the starting numbers of
the ordered list.

Syntax

The following are the different syntaxes (use cases) to define number types and the
initial (starting) number for the ordered list:

<ol type="1" start="4"> - Numerals starts with 4.

<ol type="I" start="4"> - Numerals starts with IV.

<ol type="i" start="4"> - Numerals starts with iv.

<ol type="a" start="4"> - Letters starts with d.

<ol type="A" start="4"> - Letters starts with D.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Ordered List</title>

</head>

<body>

 <ol type="i" start="4">

 Beetroot

 Ginger

 Potato

 Radish

</body>

</html>

Styling HTML Ordered List

Styling ordered lists with CSS allows customization of the appearance to match the
design preferences of a website. The CSS styles can target both the list itself () and
the list items ().

Example

<!DOCTYPE html>

<html lang="en">

<head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width,
initial-scale=1.0">

<title>Styled Ordered List</title>

<style>

/* Basic Styling */

ol { color: navy; font-family: 'Arial', sans-serif; margin-left: 20px; }

li { font-size: 16px; margin-bottom: 8px; } /* Changing Numbering Style */

ol.roman { list-style-type: upper-roman; }

ol.letters { list-style-type: upper-alpha; } /* Adding Counters */

ol.counter-list { counter-reset: my-counter; }

ol.counter-list li { counter-increment: my-counter; }

ol.counter-list li::before { content: counter(my-counter) '. '; } /* Changing Text Color on
Hover */

li.hover-effect:hover { color: #e44d26; }

</style>

</head>

<body>

<h1>Styled Ordered List Example</h1>

<h2>Basic Styling</h2>

Item 1

Item 2

Item 3

<h2>Changing Numbering Style</h2>

<ol class="roman">

Roman I

Roman II

Roman III

<ol class="letters">

Letter A

Letter B

Letter C

<h2>Adding Counters</h2>

 <ol class="counter-list">

Item

Item

Item

<h2>Changing Text Color on Hover</h2>

<li class="hover-effect">Hover Effect 1

<li class="hover-effect">Hover Effect 2

<li class="hover-effect">Hover Effect 3

</body>

</html>

HTML - Definition Lists

A description list is defined by <dl> tag along with the <dt> and <dd> tags. Where <dt> tag
defines the definition term, and <dd> tag defines the corresponding definition.

HTML Definition Lists

HTML definition lists define list items
having the structure of terms and their
corresponding definitions. These types
of lists are used to define a listing
structure where each list item (data
term) contians its corresponding
explanation (definition description).

The <dl> tag supports almost all browsers. It also supports the global attributes and
event attributes. It consists of open and closing tags like <dl></dl>

Definition List Tags

The following are the HTML tags used for defining definition lists:

• <dl>: This tag defines the definition list.

• <dt>: This tag defines the description term.

• <dd>: This tag defines the corresponding description for the given definition term.

Creating Definition List

Where,

• <dl> is used as a container tag for the definition list.

• <dt> is used to define the terms that you want to define.

• <dd> is used to place the definitions for the corresponding terms.

Syntax

Below is the syntax (structure) of creating a definition list in HTML:

<dl>

 <dt>Term 1</dt>

 <dd>Definition for Term 1</dd>

 <dt>Term 2</dt>

 <dd>Definition for Term 2</dd>

 <dt>Term 3</dt>

 <dd>Definition for Term 3</dd>

</dl>

Example of Definition List

<!DOCTYPE html> <html> <body> <h2>Different Types Of Languages</h2> <dl>
<dt>English:</dt> <dd> English is the first world language. We can use English language
for communication in all areas like politics, media, entertainment, art etc. </dd>
<dt>Hindi:</dt> <dd> Hindi is an Indo-Aryan language spoken mostly in India. In India Hindi
is spoken as a first language by most of the people. </dd> <dt>Marathi:</dt> <dd> Marathi
is an Indo-Aryan language spoken by Marathi people of Maharashtra in India. It is a
official Language of Maharashtrian people </dd> <dt>French:</dt> <dd> French is the
official language in Canada, Central, African, Burkina, Faso, Burundi etc. </dd> </dl>
</body> </html>

Styling Definition Lists

<!DOCTYPE html>

<html>

<head>

<style>

body { font-family: Arial, sans-serif; margin: 20px; }

dl { background-color: #f9f9f9; border: 1px solid #ddd; padding: 20px; border-radius: 5px;
max-width: 400px; margin: 0 auto; }

dt { font-weight: bold; color: #333; margin-top: 10px; }

dd { margin: 0 0 10px 20px; color: #555; }

</style>

</head>

<body>

<dl>

<dt>Tutorialspoint</dt>

<dd>

Tutorialspoint provides access to a library of video courses on various prominent
technologies, aimed at helping individuals master those technologies and become
certified professionals.

</dd>

<dt>Tutorix</dt>

 <dd>

Tutorix is child company of tutorialspoint that covers NCERT-based syllabus for maths
and science. Also give a great foundation for IIT/JEE and NEET aspirants.

</dd>

</dl>

</body>

</html>

Nested Definition Lists

<!DOCTYPE html>

<html lang="en">

<head>

<title>Nested Definition Lists Example</title>

</head>

<body>

<h2>Nested Definition Lists Example</h2>

 <dl>

<dt>Programming Languages</dt>

 <dd>

<dl>

<dt>Python</dt>

<dd>

A high-level, interpreted programming language.

</dd>

<dt>JavaScript</dt>

<dd>

A language used for web development.

</dd>

</dl>

</dd>

<dt>Web Technologies</dt>

 <dd>

<dl>

<dt>HTML</dt>

<dd>

The standard markup language for creating web pages.

</dd>

<dt>

CSS

</dt>

<dd>

Used for styling web pages.

</dd>

</dl>

</dd>

</dl>

</body>

</html>

HTML - Tables
HTML tables represent data, such as text, images, etc. in a structured format with rows
and columns.

HTML tables offer a visual structure that aids in clarity and comprehension, making them
a fundamental element in web development.

Why HTML Tables are Used?
HTML tables are used for various reasons, primarily centered around organizing and
presenting data effectively. Some key purposes include −

• Structuring Data − Tables provide a coherent structure for organizing and
displaying data, making it easier for users to interpret information.

• Comparative Presentation − When there is a need to compare different sets of
data side by side like difference between two concepts, tables offer a clear and
visually accessible format.

• Tabular Data Representation − Information that naturally fits into rows and
columns, such as schedules, statistics, or pricing tables, can be well-represented
using HTML tables.

Creating an HTML Table

You can create a table in HTML by using the <table> tag along with several tags that
define the structure and content inside the table. The primary tags that are used with
the <table> tag are <tr>, <td>, and <th>.

Creating tables in HTML involves several elements that define the structure and content.
The primary tags used are <table>, <tr>, <td>, and <th>.

• HTML <table> Tag: This tag is used to create the table that wrap the rows and
columns within it.

• HTML <tr> Tag: Stands for "table row" and is used to create a row within the table.

• HTML <td> Tag: Represents "table data" and is used to create standard cells within
a row.

• HTML <th> Tag: Represents "table header" and is used to create header cells
within a row.

•

HTML Table Structure - Rows and Columns

• Rows: Each row in an HTML table is defined using the `<tr>` tag. It contains a set
of table cells (`<td>` or `<th>`), representing the individual elements within that
row.

• Columns: The actual data or header information is contained within the table cells.
Cells in the same position in different rows form a column.

• A table row is defined by the <tr> tag. To set table header, we use <th> tag. To insert
data in table cell, use the <td> tag.

• A table in HTML consists of table cells inside rows and columns of the table.

• Table heading is defined by the <th>...</th>. Data inside the <th> are the headings
of the column of a table.

• Each table cell is defined by a <td>...</td> tag. Data inside the <td> tag are the
content of the table rows and columns.

• Each table row starts with a <tr></tr> tag.

• We use style sheet to create border for the table.

Example

<!DOCTYPE html>

<html>

<body>

<table border="1">

<tr> <

th>Product</th>

<th>Category</th>

<th>Price</th>

</tr>

<tr>

<td>Laptop</td>

<td>Electronics</td>

<td>$800</td>

</tr>

<tr>

<td>Bookshelf</td>

<td>Furniture</td>

<td>$150</td>

</tr>

<tr>

<td>Coffee Maker</td>

 <td>Appliances</td>

<td>$50</td>

</tr>

</table>

</body>

</html>

Styling HTML Tables

You can also style an HTML table using CSS properties to give it a custom appearance.
Either you can create classes to apply styles on a table, or you can simply write internal
CSS properties to style the table.

Example

<!DOCTYPE html>

<html>

<head>

<style>

table { width: 100%; border-collapse: collapse; margin-bottom: 20px; }

th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }

th { background-color: #f2f2f2; }

</style>

</head>

<body>

<h2>HTML Table</h2>

<p>This table is 3*3 cells including table header. </p>

<table>

<tr>

<th>Header 1</th>

<th>Header 2</th>

<th>Header 3</th>

 </tr>

<tr>

<td>Data 1</td>

<td>Data 2</td>

<td>Data 3</td>

</tr>

<tr>

<td>Data 4</td>

<td>Data 5</td>

<td>Data 6</td>

</tr>

</table>

</body>

</html>

Table Background Color and Image

You can set the background color and background image of an HTML table by using the
CSS and attributes of the <table> tag.

Using Attributes

The following are the attributes that can be used with <table> tag to set the background
color and/or image:

• bgcolor: The bgcolor attribute sets the table's background color.

• <table bgcolor="#f0f0f0">

• background: The background attribute sets a background image.

• <table background="image.jpg">

Using CSS Properties

Using table tag's attributes is an old (outdated) style. It is recommended that you
should use CSS to style an HTML table. The background-color and background-
image properties are used to set background color and image respectively.

table {

 background-color: #f0f0f0;

 background-image: url('image.jpg');

}

Example to set table's background color and image using attributes

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Background Color</title>

<style>

table { background-color: yellow; background-image: url('/images/test.png'); }

</style>

</head>

<body>

<table>

<tr>

<th>Column 1</th>

<th>Column 2</th>

<th>Column 3</th>

</tr>

<tr>

<td rowspan="2">Row 1 Cell 1</td> <td>Row 1 Cell 2</td>

<td>Row 1 Cell 3</td>

</tr>

<tr>

<td>Row 2 Cell 2</td>

<td>Row 2 Cell 3</td>

</tr>

<tr>

<td colspan="3">Row 3 Cell 1</td>

</tr>

</table>

</body>

</html>

Table Width and Height
The table's width and height can be set using either attributes or CSS properties. These
values can be defined in pixels or percentages.

Using Attributes

The following attributes can set the width and height of a table:

• width: It defines the width of the table.

<table width="80%">

• height: It defines the height of the table.

<table height="200">

Using CSS

The following CSS properties can set the width and height of a table:

• width: It defines the width of the table.

table { width: 80%; }

• height: It defines the height of the table.

table { height: 400px; }

Example to set table's width and height using attributes

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Width/Height</title>

</head>

<body>

<table border="1" width="80%" height="400">

<tr>

<th>Header 1</th>

<th>Header 2</th>

</tr>

<tr>

<td>Row 1, Column 1</td>

<td>Row 1, Column 2</td>

</tr>

<tr>

<td>Row 2, Column 1</td>

<td>Row 2, Column 2</td>

</tr>

</table>

</body>

</html>

Example to set table's width and height using CSS

<!DOCTYPE html>

<html>

<head>

<title>HTML Table Width/Height</title>

<style>

table{ width: 80%; height: 400px; }

</style>

</head>

<body>

<table border="1">

<tr>

<th>Header 1</th>

<th>Header 2</th>

</tr>

<tr>

<td>Row 1, Column 1</td>

<td>Row 1, Column 2</td>

</tr>

<tr>

<td>Row 2, Column 1</td>

<td>Row 2, Column 2</td>

</tr>

</table> </body> </html>

HTML Nested Tables

Nested HTML tables refer to create tables inside a table. You can create tables inside a
table by using the <table> tab inside any <td> tag, it creates another table in the main
table's cell.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Nested Tables</title>

</head>

<body>

<table border=1>

<tr>

<td> First Column of Outer Table </td>

<td>

<table border=1> <tr>

<td> First row of Inner Table </td>

</tr>

<tr>

<td> Second row of Inner Table </td>

 </tr>

</table>

</td>

</tr>

 <tr>

<td> <table border=1> <tr>

<td> First row of Inner Table </td>

</tr>

<tr>

<td> Second row of Inner Table

</td> </tr> </table> </td> <td> First Column of Outer Table </td> </tr> </table> </body>
</html>

Table Headers and Captions
Headers and captions are used inside tables to organize and present data in a structured
format.

The table heading is an essential part of a table, providing labels for columns.
The <th> (table header) element is used to define table headings.

Captions are used in the tables to provide a title or explanation for the table.
The <caption> element is placed immediately after the opening table tag.

Syntax to Create Table's Header and Caption

<table>

<caption>Description of table</caption>

<tr>

 <th>heading 1</th>

 <th>heading 2</th>

 <th>heading 3</th>

</tr>

</table>

Define a Header Row for a Table

The <th> tag is used to represent table headings, and it is typically used within
the <tr> (table row) element. Unlike the <td> (table data) tag used for regular cells, <th> is
reserved for headers. In most cases, the first row of a table is designated as the header
row.

Example

<!DOCTYPE html>

<html lang="en">

<head>

<title>HTML Table Header</title>

</head>

<body>

<table border="1">

<tr>

<th>Name</th>

<th>Salary</th>

</tr>

<tr>

<td>Ramesh Raman</td>

<td>5000</td>

</tr>

 <tr>

<td>Shabbir Hussein</td>

<td>7000</td>

</tr>

</table>

</body>

 </html>

Styling Table Headings

Styling table headings can enhance the visual appeal of a table. CSS can be applied
to <th> elements to customize their appearance. In the following example, a simple CSS
style is added to the <style> tag within the <head> section to modify the background color
and text alignment of the table headings.

Example

<!DOCTYPE html>

<html lang="en">

 <head>

<title>Styled HTML Table Header</title>

<style>

th { background-color: #4CAF50; color: white; text-align: left; padding: 8px; }

</style>

</head>

<body>

<table border="1">

<tr>

<th>Name</th>

<th>Salary</th>

</tr> <tr>

<td>Ramesh Raman</td>

<td>5000</td> </tr>

<tr>

<td>Shabbir Hussein</td>

<td>7000</td>

</tr>

</table>
</body>

 </html>

Using Header Cells in Any Row

While it's common to use <th> in the first row of a table, you can utilize it in any row based
on your requirements. This flexibility allows for the creation of complex tables with
multiple header rows or headers interspersed within the table.

<!DOCTYPE html>

<html lang="en">

<head>

<title>Styled HTML Table Header</title>

<style>

th { background-color: #4CAF50; color: white; text-align: left; padding: 8px; }

</style>

</head>

<body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <th>Additional Details</th> <th>Specialization</th> </tr>

 <tr> <td>Technical Lead</td> <td>Web Development</td> </tr>

</table>

 </body>

</html>

Table Header Using <thead> Element

The <thead> tag is used to group table header cells so that a combined CSS style can be
applied to header cells.

The <thead> tag is typically placed within the <table> element and contains one or
more <tr> elements, each of which, in turn, contains <th> elements representing column
headers.

Example

<!DOCTYPE html>

<html lang="en">

<head>

<title>HTML Table Header</title>

</head>

<body>

<table border=1>

<thead>

<tr> <th>Column 1</th> <th>Column 2</th> <th>Column 3</th> </tr> </thead>

<!-- Table body goes here -->

</table>

</body> </html>

You can style HTML tables by using the CSS. Table styling helps you to customize the
normal appearance of the elements like borders, cell padding, text alignment,
background colors, and more to create a well-formatted table on a webpage.

The following are some of the table stylings in HTML:

• Collapsed Border Table

• Horizontal Zebra Striped Table

• Text Alignment in Table Cells

• Vertical Zebra Striped Table

• Table with Combined Vertical and Horizontal Zebra Stripes

• Table with Horizontal Dividers

• Hoverable Table Rows

Collapsed Border Table

You have the flexibility to manage the space between table borders by manipulating
the 'border-collapse' property. This property determines how adjacent table cell borders
interact, and adjusting it allows you to control the spacing or gap between the borders
within your table.

By setting 'border-collapse' to "collapse", borders will merge, eliminating any spacing,
while "separate" allows you to control the spacing using the 'border-spacing' property,
providing a more customized appearance to your table layout.

Example

<!DOCTYPE html>

 <html>

<head>

<style>

#table1 { border-collapse: separate; }

#table2 { border-collapse: collapse; }

</style>

</head>

<body>

<table id="table1" border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table>

<table id="table2" border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

 <tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

 </table> </body> </html>

Horizontal Zebra Striped Table

The Zebra Stripes - Horizontal technique involves styling table rows with alternating
colors, enhancing the visual appeal and readability of the table.

The :nth-child(even) selector targets every second row, and a background color is
applied to create a striped effect.

Example

<!DOCTYPE html>

<html>

<head>

<style>

 tr:nth-child(even) { background-color: #8a83de; }

</style>

</head>

<body>

<table border="1">

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table> </table> </body> </html>

Text Alignment in Table Cells

You can align the text within your table cells horizontally and vertically using the text-
align and vertical-align properties.

Example

<!DOCTYPE html>

 <html>

<head>

<style>

 td, th { text-align: center; vertical-align: middle; }

</style>

</head>

<body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr> <tr> <td>Ramesh Raman</td> <td>5000</td> </tr>
<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr> </table> </body> </html>

Vertical Zebra Striped Table

The Zebra Stripes - Vertical technique enhances table readability by applying alternating
styles to every other column. This is achieved using the :nth-child(even) selector for
both table data (td) and table header (th) elements.

Example

<!DOCTYPE html>

<html>

<head>

<style>

td:nth-child(even), th:nth-child(even) { background-color: #D6EEEE; }

</style>

</head>

<body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table> </body> </html>

Table with Combined Vertical & Horizontal Zebra Stripes

You can achieve a captivating visual effect by combining both horizontal and vertical
zebra stripe patterns on your table. This involves applying alternating styles to both
rows (:nth-child(even)) and columns (td:nth-child(even), th:nth-child(even)).

To enhance this effect, consider adjusting the color transparency using the rgba()
function, creating an engaging and aesthetically pleasing overlap of stripes for a unique
and visually interesting outcome.

Example

<!DOCTYPE html>

<html>

<head>

<style>

tr:nth-child(even) { background-color: rgba(150, 212, 212, 0.4); }

th:nth-child(even),

td:nth-child(even) { background-color: rgba(212, 150, 192, 0.4); }

</style>

</head>

<body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table>

</body>

</html>

Table with Horizontal Dividers

You can enhance the visual structure of your table by incorporating horizontal dividers.
Achieve this effect by styling each '<tr>' element with a bottom border.

This CSS customization provides a clear separation between rows, contributing to
improved table clarity and a more organized presentation of tabular data.

Example

<!DOCTYPE html>

<html>

<head>

<style>

table { border-collapse: collapse; }

tr { border-bottom: 5px solid #ddd; }

th, td { padding: 10px; /* Add padding for better visibility */ }

</style>

</head>

<body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

 <tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table>

</body>

 </html>

Hoverable Table Rows

You can improve user interaction by employing the ':hover' selector, which highlights
table rows when users hover over them. This enhances the visual feedback, making the
table more interactive and user-friendly.

Example

<!DOCTYPE html>

<html>

<head>

<style>

tr:hover { background-color: #D6EEEE; }

</style>

</head> <

body>

<table border="1">

<tr> <th>Name</th> <th>Salary</th> </tr>

<tr> <td>Ramesh Raman</td> <td>5000</td> </tr>

<tr> <td>Shabbir Hussein</td> <td>7000</td> </tr>

</table>

</body>

</html>

HTML - Frames
HTML frames are used to divide your browser window into multiple sections where each
section can load a separate HTML document independently. A collection of frames in the
browser window is known as a frameset. The window is divided into frames in a similar
way the tables are organized: into rows and columns.

The <frame> tag is no longer recommended as it is not supported by HTML5. Instead of
using this tag, we can use the <iframe> or <div> with CSS to achieve the similar effects.

Syntax

<frameset rows="50%,50%">

 <frame name="top" src="link/to/frame1" />

 <frame name="bottom" src="link/to/frame2" />

</frameset>

Where the rows attribute of frameset defines the division of the window into horizontal
sections. In this case, the window is divided into two rows, each taking up 50% of the
available height.

Examples of HTML Frames

To make frames on a page we use <frameset> tag instead of <body>
tag. The <frameset> tag defines how to divide the window into frames.
The rows attribute of <frameset> tag defines horizontal frames and cols attribute
defines vertical frames. Each frame is indicated by <frame> tag and it defines which
HTML document shall open into the frame.

<!DOCTYPE html>

<html>

<head>

 <title>HTML Frames</title>

</head>

<frameset rows="10%,80%,10%">

 <frame name="top" src="/html/top_frame.htm" />

 <frame name="main" src="/html/main_frame.htm" />

 <frame name="bottom" src="/html/bottom_frame.htm" />

 <noframes>

 <body>

 Your browser does not support frames.

 </body>

 </noframes>

</frameset>

</html>

Creating vertical Frames

<!DOCTYPE html>

<html>

<head>

 <title>HTML Frames</title>

</head>

<frameset cols="25%,50%,25%">

 <frame name="left" src="/html/top_frame.htm" />

 <frame name="center" src="/html/main_frame.htm" />

 <frame name="right" src="/html/bottom_frame.htm" />

 <noframes>

 <body>

 Your browser does not support frames.

 </body>

 </noframes>

</frameset></html>

Frame's name and target Attributes

One of the most popular uses of frames is to place navigation bars in one frame and then
load main pages into a separate frame.

<!DOCTYPE html>

<html>

<head>

 <title>HTML Target Frames</title>

</head>

<frameset cols="200, *">

 <frame src="/html/menu.htm" name="menu_page" />

 <frame src="/html/main.htm" name="main_page" />

 <noframes>

<body>

 Your browser does not support frames.

</body>

 </noframes>

</frameset>

</html>

Following is the content of menu.htm file

<!DOCTYPE html>

<html>

<body bgcolor="#4a7d49">

 Google

 Microsoft

 BBC News</body></html>

<!DOCTYPE html>

<html>

<body bgcolor="#b5dcb3">

 <h3>

 This is main page and content from any link

 will be displayed here.

 </h3>

 <p>

 So now click any link and see the result.

 </p>

</body>

</html>

Attributes of frameset Tag

Attributes Description

cols Specifies how many columns are contained in the frameset and the
size of each column. You can specify the width of each column in
one of four ways.

• Absolute values in pixels. For example to create three
vertical frames, use cols="100, 500,100".

• A percentage of the browser window. For example to create
three vertical frames, use cols="10%, 80%,10%".

• Using a wildcard symbol. For example to create three
vertical frames, use cols="10%, *,10%". In this case wildcard
takes remainder of the window.

• As relative widths of the browser window. For example to
create three vertical frames, use cols="3*,2*,1*". This is an
alternative to percentages. You can use relative widths of
the browser window. Here the window is divided into sixths:
the first column takes up half of the window, the second
takes one third, and the third takes one sixth.

rows This attribute works just like the cols attribute and takes the same
values, but it is used to specify the rows in the frameset. For
example to create two horizontal frames, use rows="10%, 90%". You
can specify the height of each row in the same way as explained
above for columns.

border This attribute specifies the width of the border of each frame in
pixels. For example border="5". A value of zero means no border.

frameborder This attribute specifies whether a three-dimensional border
should be displayed between frames. This attribute takes value
either 1 (yes) or 0 (no). For example frameborder="0" specifies no
border.

framespacing This attribute specifies the amount of space between frames in a
frameset. This can take any integer value. For example
framespacing="10" means there should be 10 pixels spacing
between each frames.

HTML <frame> Tag Attributes

Attribute Description

src This attribute is used to give the file name that should be loaded in
the frame. Its value can be any URL. For example,

src="/html/top_frame.htm" will load an HTML file available in html
directory.

name This attribute allows you to give a name to a frame. It is used to
indicate which frame a document should be loaded into. This is
especially important when you want to create links in one frame
that load pages into an another frame, in which case the second
frame needs a name to identify itself as the target of the link.

frameborder This attribute specifies whether or not the borders of that frame
are shown; it overrides the value given in the frameborder attribute
on the <frameset> tag if one is given, and this can take values either
1 (yes) or 0 (no).

marginwidth This attribute allows you to specify the width of the space between
the left and right of the frame's borders and the frame's content.
The value is given in pixels. For example marginwidth="10".

marginheight This attribute allows you to specify the height of the space between
the top and bottom of the frame's borders and its contents. The
value is given in pixels. For example marginheight="10".

noresize By default you can resize any frame by clicking and dragging on the
borders of a frame. The noresize attribute prevents a user from
being able to resize the frame. For example noresize="noresize".

scrolling This attribute controls the appearance of the scrollbars that
appear on the frame. This takes values either "yes", "no" or "auto".
For example scrolling="no" means it should not have scroll bars.

longdesc This attribute allows you to provide a link to another page
containing a long description of the contents of the frame. For
example longdesc="framedescription.htm"

Disadvantages of Frames

There are few drawbacks with using frames, so it's never recommended to use frames
in your webpages.

• Some smaller devices cannot cope with frames often because their screen is not
big enough to be divided up.

• Sometimes your page will be displayed differently on different computers due to
different screen resolution.

• The browser's back button might not work as the user hopes.

• There are still few browsers that do not support frame technology.

HTML iframes

HTML Iframe is used to display a nested webpage (a webpage within a webpage). The
HTML <iframe> tag defines an inline frame, hence it is also called as an Inline frame.

An HTML iframe embeds another document within the current HTML document in the
rectangular region.

The webpage content and iframe contents can interact with each other using JavaScript.

Iframe Syntax
An HTML iframe is defined with the <iframe> tag:

<iframe src="URL"></iframe>

Here, "src" attribute specifies the web address (URL) of the inline frame page.

Set Width and Height of iframe

You can set the width and height of iframe by using "width" and "height" attributes. By
default, the attributes values are specified in pixels but you can also set them in percent.
i.e. 50%, 60% etc.

Example: (Pixels)

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes example</h2>

<p>Use the height and width attributes to specify the size of the iframe:</p>

<iframe src="https://www.SardarAzeem.com/" height="300" width="400"></iframe>

</body>

</html>

Example: (Percentage)

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes</h2>

<p>You can use the height and width attributes to specify the size of the iframe:</p>

<iframe src="https://www.SardarAzeem.com/" height="50%" width="70%"></iframe>

</body>

</html>

You can also use CSS to set the height and width of the iframe.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes</h2>

<p>Use the CSS height and width properties to specify the size of the iframe:</p>

<iframe src="https://www.SardarAzeem.com/" style="height:300px;width:400px"></if
rame>

</body>

</html>

Remove the border of iframe

By default, an iframe contains a border around it. You can remove the border by using
<style> attribute and CSS border property.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Remove the Iframe Border</h2>

<p>This iframe example doesn't have any border</p>

<iframe src="https://www.SardarAzeem.com/" style="border:none;"></iframe>

</body>

</html>

You can also change the size, color, style of the iframe's border.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Custom Iframe Border</h2>

<iframe src="https://www.SardarAzeem.com/" style="border:2px solid tomato;"></ifr
ame>

</body>

</html>

Iframe Target for a link

You can set a target frame for a link by using iframe. Your specified target attribute of
the link must refer to the name attribute of the iframe.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Iframe - Target for a Link</h2>

<iframe height="300px" width="100%" src="new.html" name="iframe_a"></iframe>

<p>JavaSardarAzeem.co
m</p>

<p>The name of iframe and link target must have same value else link will not open
as a frame. </p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

p{ font-size: 50px;

color: red;}

</style>

</head>

<body style="background-color: #c7f15e;">

<p>This is a link below the ifarme click on link to open new iframe. </p>

</body>

</html>

Embed YouTube video using iframe

You can also add a YouTube video on your webpage using the <iframe> tag. The attached
video will be played at your webpage and you can also set height, width, autoplay, and
many more properties for the video.

Following are some steps to add YouTube video on your webpage:

o Goto YouTube video which you want to embed.

o Click on SHARE ➦ under the video.

o Click on Embed <> option.

o Copy HTML code.

o Paste the code in your HTML file

o Change height, width, and other properties (as per requirement).

o

Example

<iframe width="550" height="315" src="https://www.youtube.com/embed/JHq3pL4cd
y4" frameborder="0" allow="accelerometer; autoplay; encrypted-
media; gyroscope; picture-in-
picture" allowfullscreen style="padding:20px;"></iframe>

 <iframe width="550" height="315" src="https://www.youtube.com/embed/O5hSh

UO6wxs" frameborder="0" allow="accelerometer; autoplay; encrypted-
media; gyroscope; picture-in-picture" style="padding:20px;">></iframe>

Attributes of <iframe>

Attribute name Value Description

allowfullscreen If true then that frame can be opened in
full screen.

height Pixels It defines the height of the embedded
iframe, and the default height is 150 px.

name text It gives the name to the iframe. The name
attribute is important if you want to
create a link in one frame.

frameborder 1 or 0 It defines whether iframe should have a
border or not. (Not supported in HTML5).

Width Pixels It defines the width of embedded frame,
and default width is 300 px.

src URL The src attribute is used to give the path
name or file name which content to be
loaded into iframe.

sandbox This attribute is used to apply extra
restrictions for the content of the frame

allow-forms It allows submission of the form if this
keyword is not used then form
submission is blocked.

allow-popups It will enable popups, and if not applied
then no popup will open.

allow-scripts It will enable the script to run.

allow-same-origin If this keyword is used then the
embedded resource will be treated as
downloaded from the same source.

srcdoc The srcdoc attribute is used to show the
HTML content in the inline iframe. It
overrides the src attribute (if a browser
supports).

scrolling It indicates that browser should provide
a scroll bar for the iframe or not. (Not
supported in HTML5)

auto Scrollbar only shows if the content of
iframe is larger than its dimensions.

yes Always shows scroll bar for the iframe.

no Never shows scrollbar for the iframe.

HTML - Meta Tags
HTML <meta> tag lets us specify metadata, which is additional important information
about a document, in a variety of ways. The META elements can be used to
include name and content pairs describing properties of the HTML document, such as
author, expiry date, a list of keywords, document author, etc.

HTML <meta> tag can be used to provide extra information. It's a self-closing element,
meaning it doesn't require a closing tag but carries information within its attributes. You
can include one or more meta tags in your document based on what information you
want to keep in your document, but in general, meta tags do not impact the physical
appearance of the document, so from the appearance point of view, it does not matter if
you include them or not.

Adding Metadata to Web Pages Using Meta Tags

The following metadata can be added using the <meta> tag:

• Specifying Keywords

• Document Revision Date

• Page Redirection

• Setting Author Name

• Document Description

• Document Refreshing

• Setting Cookies

Specify Character Set

You can use the <meta> tag to specify important keywords related to the document, and
later these keywords are used by the search engines while indexing your webpage for
searching purposes.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

</head>

<body><p>Hello HTML5!</p></body></html>

Document Description

You can use the <meta> tag to give a short description about the document. This again
can be used by various search engines while indexing your webpage for searching
purposes.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

</head>

<body>

 <p>Hello HTML5!</p>

</body>

</html>

Document Revision Date

You can use the <meta> tag to give information about the last time the document was
updated. This information can be used by various web browsers while refreshing your
webpage.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="revised" content="Tutorialspoint, 3/7/2014" />

</head>

<body>

 <p>Hello HTML5!</p>

</body></html>

Document Refreshing

The <meta> tag can be used to specify a duration after which your web page will keep
refreshing automatically.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="revised" content="Tutorialspoint, 3/7/2014" />

 <meta http-equiv="refresh" content="5" />

</head>

<body>

 <p>Hello HTML5!</p></body></html>

Page Redirection

You can use the <meta> tag to redirect your page to any other webpage. You can also
specify a duration if you want to redirect the page after a certain number of seconds.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="revised" content="Tutorialspoint, 3/7/2014" />

 <meta http-equiv="refresh" content="5; url=http://www.tutorialspoint.com" />

</head>

<body>

 <p>Hello HTML5!</p>

</body></html>

Setting Cookies

Cookies are data stored in small text files on your computer, and it is exchanged between
a web browser and a web server to keep track of various information based on your web
application needs.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="revised" content="Tutorialspoint, 3/7/2014" />

 <meta http-equiv="cookie" content="userid=xyz; expires=Wednesday, 08-Aug-15
23:59:59 GMT;" />

</head><body> <p>Hello HTML5!</p></body></html>

Setting Author Name

You can set an author name on a web page using a <meta> tag. Author name be specified
by assigning the "author" value to the "name" attribute.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="author" content="Mahnaz Mohtashim" />

</head>

<body>

 <p>Hello HTML5!</p>

</body>

</html>

Specify Character Set

You can use the <meta> tag to specify the character set used within the webpage. By
default, Web servers and Web browsers use ISO-8859-1 (Latin1) encoding to process
Web pages.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="author" content="Mahnaz Mohtashim" />

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

</head>

<body>

 <p>Hello HTML5!</p></body></html>

Example

To serve the static page with traditional Chinese characters, the webpage must contain
a <meta> tag to set Big5 encoding:

<!DOCTYPE html>

<html>

<head>

 <title>Meta Tags Example</title>

 <meta name="keywords" content="HTML, Meta Tags, Metadata" />

 <meta name="description" content="Learning about Meta Tags." />

 <meta name="author" content="Mahnaz Mohtashim" />

 <meta http-equiv="Content-Type" content="text/html; charset=Big5" />

</head>

<body>

 <p>Hello HTML5!</p>

</body>

</html>

HTML - Forms
An HTML form is a webpage section usually used for collecting data from the users and
then sent to a server for further processing.

HTML Forms

HTML forms are collections of interactive controls and various input types, such as text,
numbers, email, password, radio buttons, checkboxes, buttons, etc., that collect user
information. HTML forms are created by using the HTML <form> tag. All user input-
related tags are placed inside the <form> tag.

Syntax

<form>

 <!-- Form elements-->

</form>

The following syntax contains all necessary elements:

<form action="url" method="method_type" target="target_value"
enctype="enctype_value">

 <!-- Form elements-->

</form>

Why Use HTML Forms?

HTML forms are used to collect user information from the webpage and send it to the
server. The common uses for HTML forms are:

• Creating registration forms so that users can sign up with their information and
authenticate further to access the functionalities of the websites/web
applications.

• Collect data through the different types of surveys, feedback, etc.

• Uploading the images, resumes, or any other type of files.

Creating an HTML Form

To create an HTML form, use the <form> element along with the other required elements
based on the information you want to collect, such as input boxes, buttons, radio buttons,
checkboxes, etc. These elements are known as form controls (form elements).

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Form Example</title>

</head>

<body>

<h1>HTML Form Example</h1>

<form> <

!-- Text Input -->

<label for="name">Name:</label> <input type="text" id="name"
name="name" placeholder="Enter your name" required>

<!-- Radio Buttons -->

<label>Gender:</label> <input type="radio" id="male" name="gender"
value="male">

<label for="male">Male</label> <input type="radio" id="female" name="gender"
value="female">

<label for="female">Female</label>

 <!-- Checkboxes -->
<label>Hobbies:</label> <input type="checkbox" id="reading"
name="hobbies" value="reading">

<label for="reading">Reading</label> <input type="checkbox" id="traveling"
name="hobbies" value="traveling">

<label for="traveling">Traveling</label> <input type="checkbox" id="sports"
name="hobbies" value="sports">

<label for="sports">Sports</label>

<!-- Submit Button -->

<button type="submit">Submit</button>

</form> </body> </html>

HTML Form with Redirection

In the previous example, we designed a form that accepts user input but doesn't process
the data. In this example, users will be redirected to Tutorialspoint's HTML Tutorial upon
form submission. The redirection only happens if both the first name and last name fields
are filled out; otherwise, the form prompts the user to provide the required information.

Example

<!DOCTYPE html>

<html>

<head> <meta charset="utf-8">

<title>Sample HTML Form</title>

</head>

<body>

<!-- Start of the form element -->

<form action="" method="post">

<!-- Form controls -->

<label for="first_name">First Name:</label> <input type="text" id="first_name"
name="first_name" required />

<label for="last_name">Last Name:</label> <input type="text" id="last_name"
name="last_name" required />

<input type="submit" value="Submit">

</form>

</body>

</html>

Form Elements

There is a list of elements that can be used within the form element. All the elements
are briefly described below:

1. The <form> Element

HTML <form> tag is used to create the <form> element. This element is the container for
all other form elements. The form element does not create the form; it's the container
that holds the other form elements.

Example

<form>.....</form>

2. The <input> Element

HTML <input> tag is an essential element of form control for gathering user input from
websites. We can use this tag to create an input element.

Example

<input type = ".."/>

3. The <label> Element

HTML <label> tag is used to create a label element that represents a caption for an item
in a UI (user interface), or to add labels to a form control like text, textarea, checkbox,
radio button, etc.

Example

<label>.......</label>

4. The <legend> Element

HTML <legend> tag is the element's first child and specifies the caption or title for
the <fieldset> tag.

Example

<legend>.......</legend>

5. HTML <select> Element

HTML <select> tag is used to create the dropdown in HTML forms. We can use this tag to
create a dropdown anywhere we want.

Example

<select>....</select>

6. The <button> Element

HTML <button> tag is an interactive element used to create a button in HTML.

Example

<button>Button</button>

7. The <fieldset> Element

HTML <fieldset> tag is used to group several controls within a web form. By using
the <fieldset> tag and <legend> tag, a form can be much easier for users to understand.

Example

 <fieldset>....</fieldset>

8. The <datalist> Element

HTML <datalist> tag contains a set of <option> elements that represent recommended
options available to choose from among others.

Example

<datalist>....</datalist>

9. The <output> Element

HTML <output> tag is a flexible and underused component that enables programmers to
dynamically show the outcomes of calculations or scripts inside the content.

Example

<output> Results... </output>

10. The <option> Element

HTML <option> tag defines either the elements of the data list for autocomplete,
specified by the <datalist> tag, or the items of a drop-down list, defined by the <select>
tag.

Example

<option>.....</option>

11. The <optgroup> Element

HTML <optgroup> tag is used in the <select> element to group together
relevant <option> elements.

Example

<optgroup>

 <option>..</option>

 .

 .

</optgroup>

12. The <textarea> Element

HTML <textarea> tag is used to represent a multiline plain-text editing control.

Example

<textarea>.......</textarea>

Form Attributes

HTML form attributes provide specific functionalities, such as redirection to other web
pages, auto-completion of text, etc.

The below table lists out some of the common form attributes:

Attribute Description

action It is used to specify a URL that processes the form submission.

method It is used to define which HTTP method to use when submitting the
form.

target It is used to specify where to open the linked document.

autocomplete It allows you to set whether the autocomplete for the form should be
on or off.

enctype It is used to specify how the form input data should be encoded before
sending it to the server.

novalidate It defines that while submitting the form, the form data should not be
validated in an HTML document.

Styling HTML Forms

You can customize the appearance of HTML forms and their elements by using the CSS
to match your website theme or to make it more appealing.

Example

<!DOCTYPE html>

<html>

<head>

<title>HTML Form</title>

<style>

body { font-family: 'Segoe UI', Arial, sans-serif; }

form { width: 100%; max-width: 400px; background-color: #e8f5e9; padding: 20px;
border: 1px solid #ccc; border-radius: 5px; }

legend { font-size: 1.2rem; font-weight: bold; margin-bottom: 10px; }

label { display: block; margin-bottom: 5px; font-size: 0.9rem; }

input[type="text"], input[type="email"], input[type="password"], textarea { width: 100%;
padding: 8px; margin-bottom: 15px; border: 1px solid #ccc; border-radius: 4px; box-
sizing: border-box; }

textarea { resize: none; }

input[type="submit"] { width: 100%; padding: 10px; font-size: 1rem; color: #fff;
background-color: #04af2f; border: none; border-radius: 4px; cursor: pointer; }
input[type="submit"]:hover { background-color: #039325; }

</style>

</head>

<body>

<form>

<fieldset>

<legend>Registration Form</legend>

<label for="firstName">First Name</label> <input type="text" id="firstName"
name="FirstName" />

<label for="lastName">Last Name</label> <input type="text" id="lastName"
name="LastName" />

<label for="email">Email ID</label> <input type="email" id="email" name="email" />

<label for="password">Enter Your Password</label> <input type="password"
id="password" name="password" />

<label for="confirmPass">Confirm Your Password</label> <input type="password"
id="confirmPass" name="confirmPass" />

<label for="address">Address</label> <textarea id="address"
name="address"></textarea>

<input type="submit" value="Submit" /> </fieldset> </form> </body> </html>

Form Attributes

HTML form attributes provide different functionalities, such as redirection to other web
pages, auto-completion of text, specifying data validation rules, controlling the behavior
of form submissions, etc.

Following is a list of the most frequently used form attributes −

• action

• method

• target

• autocomplete

• enctype

• novalidate

The action Attribute

The action attribute of the <form> element transmits the user's input to a backend script
for processing. A form is of no use unless it processes the information provided by the
user. Therefore, it is important to pass the URL of a program to the action attribute. Note
that the formaction attribute can override the value of the action attribute.

Example

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title> The action Attribute </title>

</head>

<body>

<!-- Start of the form element -->

<form action = "https://pictacademy.com">

<!-- to take input -->

Name: <input type = "text" name = "your_name" required/>

Email: <input type = "email" name = "mail" required/>

<!-- to submit the data -->

<input type = "submit"> </form> </body> </html>

The method Attribute

The method attribute determines which HTTP method should be used by the browser
while uploading the form information. The most commonly used methods are as follows:

S.No Values & Description

1 GET

It is the default method for form submission, which means if we don't specify
the method name explicitly, the form will use the GET method to send data.

2 POST

It is used to send form data inside HTTP request body. It is safer than GET
method.

It is not recommended to use the GET method while sending sensitive information like
credit/debit card numbers and passwords because it exposes the submitted data in the
URL.

Example

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title> The method Attribute </title>

</head>

<body>

<!-- Start of the form element -->

<form action = "https://pictacademy.com" method = "post">

<!-- to take input -->

Name: <input type = "text" name = "your_name" required/>

Email: <input type = "email" name = "mail" required/>

<!-- to submit the data -->

<input type = "submit">

</form> </body> </html>

The target Attribute

The target attribute determines the target window or frame where the result of the
script will be displayed after submitting the form. The default target is the current
window. The target attribute accepts the following values:

S.No. Values & Description

1 _self

It opens the response in the same frame as it was clicked.

2 _blank

It opens the response in the new window or tab.

3 _parent

It opens the response in the parent frame.

4 _top

It opens the response in the full body of window.

5 framename

It opens the response in the named iframe.

Example

<!DOCTYPE html>

<html>

<head> <meta charset="utf-8">

<title> The target Attribute </title>

</head>

<body>

<!-- Start of the form element -->

<form action = "https://pictacademy.com" target = "_self">

<!-- to take input -->

Name: <input type = "text" name = "your_name" required/>

Email: <input type = "email" name = "mail" required/>

<!-- to submit the data -->

<input type = "submit"> </form> </body> </html>

The novalidate Attribute

The novalidate is a Boolean attribute that indicates the form does not need any kind of
validation. The term validation refers to the process of verifying the correctness of user
input based on predefined conditions. This attribute, when applied, exempts the form
from such checks, allowing user inputs to bypass these conditions.

If Boolean attributes like novalidate are present on an HTML element, it specifies true,
and in the case of absence, false is assumed. They do not accept any values.

Example

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title> The novalidate Attribute </title>

</head>

<body>

<!-- Start of the form element -->

<form action = "https://pictacademy.com" target = "_blank" autocomplete="off" method =
"get" novalidate>

<!-- to take input -->

Name: <input type = "text" name = "your_name" required/>

Email: <input type = "email" name = "mail" required/>

<!-- to submit the data -->

<input type = "submit">

</form> </body> </html>

The autocomplete Attribute

The autocomplete attribute of HTML predicts and suggests the subsequent input based
on the initial characters entered in the input field. This attribute primarily has two states,
namely on and off.

S.No. Values & Description

1 on

By default, the autocomplete attribute is set to on, enabling the autocomplete
functionality.

2 off

The autocomplete attribute can be toggled to off to disable this feature as per
the requirements of the web application.

The enctype Attribute

We use the enctype attribute to specify how the browser encodes the data before it
sends it to the server. Its possible values are −

S.No. Values & Description

1 application/x-www-form-urlencoded

This is the standard method most forms use in simple scenarios.

2 mutlipart/form-data

This is used when you want to upload binary data in the form of files like
images, Word files etc.

3 text/plain

It only encodes the spaces into + symbol.

HTML - Form Controls

HTML form controls (elements) are the elements used within the <form> element to
collect the user information.

Form Controls (Elements)

The form elements create controls for the user interaction within the webpage; these
elements are also termed as form controls. The form elements enable users to enter
information for the server-side processing. The nature of interaction with the server can
vary depending on the type of control used while creating the form. For example, radio
buttons are typically used to accept gender information.

We have used several common form controls in previous discussions; we will now dive
into a more detailed exploration of these elements.

There are different types of form controls that we can use to collect data using HTML
form:

• Text Input Controls

• Checkboxes Control

• Radio Buttons Control

• Select Box Control

• File Select Box

• Button Control

• Hidden Form Control

• Datetime Controls

• Date Control

• Month Control

• Week Control

• Time Control

• Number Control

• Range Control

• Email Control

• URL Control

Text Input Controls

The text input controls are further divided into three main categories −

• Single-line Text Input Control

• Password Input Control

• Multi-line Text Input Control

Single-line Text Input Control

The single-line text input control is used for items that require only one line of user
input, such as search boxes or names. They are created using the <input> tag.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Text Input Control</title>

</head>

<body>

 <form >

 First name: <input type = "text" name = "first_name" />

 Last name: <input type = "text" name = "last_name" />

 </form>

</body>

</html>

Password Input Control

The password input control is also a single-line text input, but it masks the character as
soon as a user enters it. They are also created using the HTML <input> tag, but
the type attribute is set to password:

Example

<!DOCTYPE html>

<html>

<head>

 <title>Password Input Control</title>

</head>

<body>

 <form >

 User ID : <input type = "text" name = "user_id" />

 Password: <input type = "password" name = "password" /> </form></body></html>

Multiple-line Text Input Control

The multiple-line text input control is used when the user is required to give details that
may be longer than a single sentence. Multi-line input controls are created using
the HTML <textarea> tag.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Multiple-Line Input Control</title>

</head>

<body>

 <form>

 Description :

 <textarea rows = "5" cols = "50" name = "description">

 Enter description here...

 </textarea>

 </form>

</body>

</html>

Checkboxes Control

Checkboxes are used when more than one option is required to be selected. They are
also created using the <input> tag, but the type attribute is set to checkbox.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Checkbox Control</title>

</head>

<body>

 <form>

 <input type = "checkbox" name = "maths" value = "on"> Maths

 <input type = "checkbox" name = "physics" value = "on"> Physics

</form>

</body>

</html>

Radio Buttons Control

Radio buttons are used when out of many options, just one option is required to be
selected. They are also created using the <input> tag, but the type attribute is set
to radio.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Radio Box Control</title>

</head>

<body>

 <form>

 <input type = "radio" name = "subject" value = "maths"> Maths

 <input type = "radio" name = "subject" value = "physics"> Physics

 </form>

</body>

</html>

Select Box Control

A select box provides features to list down various options in the form of drop-down list,
from where a user can select one or more options.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Select Box Control</title>

</head>

<body>

 <form>

 <select name = "dropdown">

 <option value = "Maths" selected>Maths</option>

 <option value = "Physics">Physics</option>

 <option value = "Chemistry">Chemistry</option>

 </select>

 </form>

</body>

</html>

File Select Box

If we want to allow a user to upload a file to our website, we will need to use a file upload
box, also known as a file select box. This is also created using the <input> element, but
the type attribute is set to file.

Example

<!DOCTYPE html>

<html>

<head>

 <title>File Upload Box</title>

</head>

<body>

 <form>

 <input type = "file" name = "fileupload" accept = "image/*" />

 </form>

</body>

</html>

Button Control

There are various ways in HTML to create clickable buttons. We can create a clickable
button using the <input> tag by setting its type attribute to button.

Example

<!DOCTYPE html>

<html>

<head>

 <title>File Upload Box</title>

</head>

<body>

 <form>

 <input type = "submit" name = "submit" value = "Submit" />

 <input type = "reset" name = "reset" value = "Reset" />

 <input type = "button" name = "ok" value = "OK" />

 <input type = "image" name = "imagebutton" src = "/html/images/logo.png" />

 </form>

</body>

</html>

Hidden Form Control

The hidden form controls are used to hide data inside the page, which later on can be
pushed to the server. This control hides inside the code and does not appear on the
actual page. For example, the following hidden form is being used to keep the current
page number. When a user clicks next page, then the value of the hidden control will be
sent to the web server, and there it will decide which page will be displayed next based
on the passed current page.

Example

<!DOCTYPE html>

<html>

<head>

 <title>File Upload Box</title>

</head>

<body>

 <form>

 <p>This is page 10</p>

 <input type = "hidden" name = "pagename" value = "10" />

 <input type = "submit" name = "submit" value = "Submit" />

 <input type = "reset" name = "reset" value = "Reset" />

 </form>

</body>

</html>

Datetime Controls

In HTML, the datetime control represents date and time (year, month, day, hour, minute,
second, and fractions of a second) together, encoded according to ISO 8601 with the time
zone set to UTC. If we use the datetime-local, it will display date and time with no time
zone information.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Date and Time : <input type = "datetime" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Date Control

The HTML date control is used to specify a date (year, month, day) encoded according to
ISO 8601.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Date : <input type = "date" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Month Control

In HTML, the month control is used to display a date consisting of only a year and a
month encoded according to ISO 8601.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Month : <input type = "month" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Week Control

As the name suggests, the week control displays a date consisting of only a year and a
week number encoded according to ISO 8601.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Week : <input type = "week" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Time Control

The HTML time control specifies the hours, minutes, seconds, and fractional seconds
encoded according to ISO 8601.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Time : <input type = "time" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Number Control

The number control accepts only numerical values. The step attribute specifies the
precision, and its default value is 1.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Select Number : <input type = "number" min = "0" max = "10" step "1"

 value = "5" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

Range Control

The range type is used for input fields that should contain a value from a range of
numbers.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Select Range : <input type = "range" min = "0" max = "10" step "1"

 value = "5" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form></body></html>

Email Control

The email control accepts only email value. This type is used for input fields that should
contain an e-mail address. If you try to submit a simple text, it forces you to enter only
an email address in email@example.com format.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Enter email : <input type = "email" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

URL Control

The HTML URL control accepts only URL values. This type is used for input fields that
should contain a URL address. If you try to submit a simple text, it forces you to enter
only a URL address, either in the http://www.example.com format or in
the http://example.com format.

Example

<!DOCTYPE html>

<html>

<body>

 <form action = "/cgi-bin/html5.cgi" method = "get">

 Enter URL : <input type = "url" name = "newinput" />

 <input type = "submit" value = "submit" />

 </form>

</body>

</html>

HTML - Input Attributes

The HTML input attributes define the characteristics and behavior of the <input> element.
These input attributes are used with the different types of input fields, such as text,
email, password, date, number, and so forth. Note that the input element is used to create
interactive controls for the web-based forms so that it can accept data from the user.

The <input> element requires only an opening tag, and it will work only if we add it in
between the <form> tags. In this tutorial, we are going to explore the attributes that are
used with the <input> element.

The attributes of the <input> element are as follows −

• type and name

• value

• size

• maxlength

• readonly

• disabled

• min and max

• accept and multiple

• placeholder

• required

• autofocus

• list

The 'type' and 'name' Attributes

The type attribute indicates the type of input control, like text, password, email, and so
on. The name attribute of an input element assigns an identifier to the form control that
enables the server to recognize and retrieve the value.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The type and name Attributes</title>

</head>

<body>

 <form >

 First name: <input type = "text" name = "first_name" />

 Last name: <input type = "text" name = "last_name" />

 </form>

</body>

</html>

The 'value' Attribute

The value attribute is used to provide an initial value inside the input control.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The value Attribute</title>

</head>

<body>

 <form >

 First name: <input type = "text" name = "first_name" value = "first name..." />

 Last name: <input type = "text" name = "last_name" value = "last name..."/>

 </form>

</body>

</html>

The 'size' Attribute

The size attribute allows you to specify the width of the text-input control in terms of
characters. The default size is 20 characters.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The size Attribute</title>

</head>

<body>

 <form >

 First name: <input type = "text" name = "first_name" size = "40" />

 Last name: <input type = "text" name = "last_name" size = "40"/>

 </form>

</body>

</html>

The 'maxlength' Attribute

The maxlength attribute allows you to specify the maximum number of characters a
user can enter into the text box.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The maxlength Attribute</title>

</head>

<body>

 <form >

 First name: <input type = "text" name = "first_name" />

 Last name: <input type = "text" name = "last_name" />

 Contact: <input type = "text" name = "phone" maxlength = "10"/>

 </form>

</body>

</html>

The 'readonly' Attribute

The readonly attribute of an input field indicates the field as read-only. Although the
content of a read-only field cannot be altered, users can still select it and copy the text.
Also, the value of a read-only field is included when the form is submitted.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The readonly Attribute</title>

</head>

<body>

 <form >

 Emp. Name: <input type = "text" name = " your_name" value = "your name..."/>

 Emp. Email: <input type = "text" name = "mail" value = "your email..."/>

 Organization: <input type = "text" name = "organization" value = "Tutorialspoint"
readonly/>

 </form>

</body>

</html>

The 'disabled' Attribute

The disabled attribute of an input field indicates the field as disabled. Unlike readonly,
the value of a disabled field will not be included when the form is submitted.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The disabled Attribute</title>

</head>

<body>

 <form >

 Emp. Name: <input type = "text" name = "your_name" value = "your name..."/>

 Emp. Email: <input type = "email" name = "mail" value = "your email..."/>

 Organization: <input type = "text" name = "organization" value = "Tutorialspoint"
disabled/>

 </form>

</body>

</html>

The 'min' and 'max' Attributes

The min and max attributes determine the minimum and maximum values, respectively,
of an input field like number, date, week, and so on. If we use them together, they will
allow users to enter an input within a predefined range.

Example

<!DOCTYPE html>

<html>

<head>

<title>The min and max Attribute</title>

</head>

<body>

<form >

Emp. Name: <input type = "text" name = "your_name" value = "your name..."/>

Emp. Email: <input type = "email" name = "mail" value = "your email..."/>

Organization: <input type = "text" name = "organization" value = "Tutorialspoint"
readonly/>

 Working Hrs: <input type = "number" name = "working_hours"
min="3" max="8"/> </form> </body> </html>

The 'accept' and 'multiple' Attributes

The accept attribute specifies the types of files that the server will take in. If we use
the multiple attribute, it will allow the users to upload more than one file.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The accept and multiple Attributes</title>

</head>

<body>

 <form>

 <input type = "file" name = "fileupload" accept = "image/*" multiple />

 </form>

</body>

</html>

The 'placeholder' Attribute

The placeholder attribute of an input field, like text, search, and email, briefly outlines
the desired value of the field. Its predefined value is displayed in the input field until the
user begins to enter their own value.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The placeholder Attribute</title>

</head>

<body>

 <form>

 Emp. Name: <input type = "text" name = "your_name"/>

 Emp. Email: <input type = "email" name = "mail" placeholder =
"example@email.com"/>

 </form>

</body>

</html>

The 'required' Attribute

The required attribute in an input field like text, search, password, and email signifies
that the field must contain some values for the form to be successfully submitted. In
other words, it indicates the mandatory field.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The required Attribute</title>

</head>

<body>

 <form >

 <p>The * Star represents mandatory field</p>

 Emp. Name: <input type = "text" name = "your_name" required/>*

 Emp. Email: <input type = "email" name = "mail" placeholder = "example@email.com"
required/>*

 <input type = "submit">

 </form>

</body>

</html>

The 'autofocus' Attribute

The autofocus attribute in an input field ensures that the field must be selected
automatically once the webpage loads completely. It implies that the cursor will be
positioned to the specified input field. In cases where multiple elements use
the autofocus attribute, only the first element will acquire the focus.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The autofocus Attribute</title>

</head>

<body>

 <form >

 Emp. Name: <input type = "text" name = "your_name" autofocus/>

 Emp. Email: <input type = "email" name = "mail" placeholder = "example@email.com"
/>

 <input type = "submit">

 </form>

</body>

</html>

The 'list' Attribute

The list attribute defines a set of predefined options for an <input> element, which are
defined within a <datalist> element. The <input> element uses a specific string as an ID
to create a link to the corresponding <datalist> element.

Example

<!DOCTYPE html>

<html>

<head>

 <title>The list Attribute</title>

</head>

<body>

 <form >

 Emp. Name: <input type = "text" name = "your_name" autofocus/>

 Emp. Email: <input type = "email" name = "mail" placeholder = "example@email.com"
/>

 Location −

 <input list="location" name="cities">

 <datalist id = "location">

 <option value="Banglore">

 <option value="Hyderabad">

 <option value="Patna">

 <option value="Delhi">

 </datalist>

 <input type = "submit">

 </form>

</body>

</html>

HTML Multimedia / HTML Video
The HTML <video> element embeds and shows a video on the webpage. You can embed
any type of video content on the webpage by using the <video> element.

HTML <video> Element

The <video> element is used to enable video playback support within a web page. It works
very similarly to the element, as it also requires adding the path or URL of the
video within the src attribute. The HTML supports only MP4, WebM, and Ogg video
formats. The <video> element also supports audio; however, the <audio> element is more
suitable for that purpose.

Embedding Videos in HTML

To embed a video inside a web page, you need to set the src attribute inside
the <video> tag that specifies the path or URL for the video. A web page serves content
to a wide variety of users with various types of browsers. Each browser supports
different video formats (MP4, WebM, and Ogg) as mentioned earlier. Therefore, we can
supply all the formats that HTML supports by including multiple <source> tags. Let the
browser decide which format is more suitable for video playback.

Syntax

<video width="640" height="360" controls>

 <source src="video-file.mp4" type="video/mp4">

 <source src="video-file.ogg" type="video/ogg">

 Your browser does not support the video tag.

</video>

The controls Attribute

You can also enable the built-in controls for controlling audio and video playback for the
users (if needed) with the help of the controls attribute. It provides an interface that
enables users to manage video playback functions such as volume adjustment, video
navigation (forward and backward), and play or pause operations.

Example to Embed a Video

<!DOCTYPE html>

<html>

<head>

 <title>HTML Video Element</title>

</head>

<body>

 <p>Playing video using video element</p>

 <p>The browser is responsible for determining the appropriate format to use.</p>

 <video width="450" height="250" controls>

 <source src="/html/media/video/sampleTP.webm" type="video/webm">

 <source src="/html/media/video/sampleTP.mp4" type="video/mp4">

 <source src="/html/media/video/sampleTP.ogv" type="video/ogg">

 <p>Sorry, video element is not supported!</p>

 </video>

</body>

</html>

Customizing Video Display Size

To set (adjust) the dimensions of the video display area, also known as the viewport, you
can use the height and width attributes of the <video> element. These attributes define
the height and width of the video viewport in pixels.

Note that the video will adjust its aspect ratio (e.g., 4:3 and 16:9) to align with the specified
height and width. Therefore, it is advisable to match the dimensions of the viewport for
a better user experience.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Video Element</title>

</head>

<body>

 <p>Playing video using video element</p>

 <video width="450" height="250" controls>

 <source src="/html/media/video/sampleTP.mp4" type="video/mp4">

 </video>

</body>

</html>

HTML Video autoplay and loop Attributes

You can configure the video to play automatically in a loop by using
the autoplay and loop attributes.

Remember, a few browsers like Chrome 70.0 do not support the autoplay feature unless
the muted attribute is used. Therefore, it is recommended to
use autoplay and muted attributes together.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Video Element</title>

</head>

<body>

 <p>Playing video using video element</p>

 <video width="450" height="250" autoplay muted loop>

 <source src="/html/media/video/sampleTP.mp4" type="video/mp4">

 </video>

</body>

</html>

Setting a Video Thumbnail

You can pass a URL of an image that works as a thumbnail for the video within
the poster attribute of the <video> element. It will display the specified image until the
video starts playing.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Video Element</title>

</head>

<body>

 <p>Playing video using video element</p>

 <video width="450" height="250" controls muted poster ="tutorials_point.jpg" >

 <source src="/html/media/video/sampleTP.mp4" type="video/mp4">

 </video>

</body>

</html>

HTML Multimedia / HTML Audio
The HTML <audio> element embeds an audio file to the webpage. You can add an audio
player inside a webpage using the <audio> element.

The <audio> element is used to enable the support of audio files within a web page. We
can include multiple sources of audio; however, the browser will choose the most
appropriate file automatically. Most of the attributes of <video> element is also
compatible with the <audio> element. The most frequently used attributes of the HTML
audio element are controls, autoplay, loop, muted, and src.

Attributes of <audio> Elements

Attribute Description

controls This attribute adds built-in audio controls for play, pause, and
volume.

autoplay This attribute allows playing the audio automatically when the
page is loaded.

loop This attribute allows looping of the audio.

muted This attribute mutes the audio by default when the page is loaded.

preload This attribute specifies how the audio should be preloaded by the
browser.

src This attribute specifies the path to the audio file.

Embedding an Audio in HTML

You can embed an audio player using the <audio> tag by specifying the audio file path.
The audio file path can be defined either by setting the src attribute or by including
the <source> tag.

The current HTML5 draft specification does not specify which audio formats browsers
should support in the audio tag. But the most commonly used audio formats
are ogg, mp3, and wav. Therefore, it is also possible to supply all these formats by using
multiple <source> tags within the <audio> element.

Syntax

<audio controls>

 <source src="file_path" type="audio/mpeg">

 Your browser does not support the audio element.

</audio>

• <audio>: The main element to embed an audio player.

• controls: Controls to add play, pause, and volume functionalities.

• <source>: It specifies the audio file name (along with its path) and the audio file's
format.

• Fallback text: The text to be displayed if the browser doesn't support
the <audio> element. In the above syntax, it will display:
"Your browser does not support the audio element."

Example of HTML Audio Element

<!DOCTYPE html>

<html>

<body>

 <p>Working with audio element</p>

 <audio controls>

 <source src= "/html/media/audio/sample_3sec_audio.mp3" type = "audio/mp3" />

 <source src= "/html/media/audio/sample_3sec_audio.wav" type = "audio/wav" />

 <source src= "/html/media/audio/sample_3sec_audio.ogg" type = "audio/ogg" />

 Your browser does not support the <audio> element.

 </audio>

</body>

</html>

Using autoplay, muted, and loop Attributes in Audio Player

We can also configure the audio to play automatically in a loop by using
the autoplay and loop attributes. Remember, the Chrome browser does not support the
autoplay feature unless the muted attribute is used. Therefore, it is recommended to use
autoplay and muted attributes together.

Example

<!DOCTYPE html>

<html>

<body>

 <p>Working with audio element</p>

 <audio controls autoplay muted loop>

 <source src= "/html/media/audio/sample_3sec_audio.mp3" type = "audio/mp3" />

 <source src= "/html/media/audio/sample_3sec_audio.wav" type = "audio/wav" />

 <source src= "/html/media/audio/sample_3sec_audio.ogg" type = "audio/ogg" />

 Your browser does not support the <audio> element.

 </audio>

</body>

</html>

HTML - Embed Multimedia
In the previous two chapters, we have used the <audio> and <video> elements to add
music and videos into our web page. There are other alternative ways to add videos,
sounds, images, or any other external content to the website by using HTML
tags <embed>and<object>. These tags cause the browser itself to include controls for the
multimedia automatically:

• HTML <embed> tag is used to embed external content such as images, videos, and
web applications. It is often used for embedding content like Flash movies or
audio/video players.

• HTML <object> tag is used to embed various types of external resources, including
images, videos, PDFs, and other web resources. It can render multiple types of
files.

Syntax

Embed tag:

<embed src = "url_of_resource">

Object tag:

<object data="url_of_resource" type="typeOfResource">

Attributes of <embed> Tag

Attribute Description

width Width attribute is used describe width of the embedded file in pixels.

height Height of the embedded file in pixels.

title It is used to label the content. The title should describe the content.

src URL of the file to be embedded.

type It indicates the type of input like mp4 and mp3.

Attributes of <object> Tag

Attributes Description

data The location or path of the resource is passed into data attribute.

type It indicates the type of resource.

height It signifies the height of the resource display area.

width It signifies the width of the resource display area.

form Its value is the id of a form. The form attribute shows which object is
associated with the form.

name It specify a unique name for the object.

usemap Specifies a URL of a client-side image map to be used with the object.

Examples of HTML Multimedia Embedding

Here are a few examples that illustrate how to render multimedia content in a webpage
using the <embed> and <object> tags:

• Embedding a Video Using <embed> Element

• Embedding an Audio Using <embed> Element

• Render a PDF Using <object> Element

• Render an HTML Document Inside Webpage

Embedding a Video Using <embed> Element

To embed an external video file inside the web page, we can pass the path of the video
file into the src attribute of the <embed> element. The supported video formats are MP4,
WebM, and Ogg. We dont need to use the controls attribute, as the <embed> tag provides
the controls automatically depending on the type of media. The controls attribute allows
users to manage the video playback functions.

<!DOCTYPE html>

<html>

<head>

 <title>HTML embed Tag</title>

</head>

<body>

 <h1>Playing video using embed tag</h1>

 <embed src="/html/media/video/sampleTP.mp4"

 type="video/mp4"

 width="450"

 height="250">

 </embed>

</body>

</html>

Embedding an Audio Using <embed> Element

To add a soundtrack to the webpage, we can pass the path of the audio file into
the src attribute by mentioning the type of audio. The supported audio formats are ogg,
mp3, and wav.

<!DOCTYPE html>

<html>

<head>

 <title>HTML embed Tag</title>

</head>

<body>

 <h1>Playing audio using embed tag</h1>

 <embed src = "/html/media/audio/sample_3sec_audio.mp3"

 type = "audio/mp3"

 width="450"

 height="250">

 </embed>

</body>

</html>

Render a PDF Using <object> Element

HTML 4 introduces the <object> element, which offers an all-purpose solution to generic
object inclusion. The <object> element allows HTML authors to specify everything
required by an object for its presentation by a user agent.

<!DOCTYPE html>

<html lang="en">

<head>

 <title>PDF Embed Example</title>

</head>

<body>

 <h1>Embedding a PDF Document</h1>

 <p>Here is an embedded PDF document:</p>

 <object data="html/pdf/index.pdf"

 type="application/pdf"

 width="300"

 height="200">

 </object>

</body>

</html>

Render an HTML Document Inside Webpage

<!DOCTYPE html>

<html lang="en">

<head>

 <title>HTML Embed Example</title>

</head>

<body>

 <h1>Embedding an HTML Document</h1>

 <p>Here is an embedded HTML document:</p>

 <object data="html/index.htm"

 type="text/html"

 width="500"

 height="400">

 alt :

 test.htm

 </object>

</body>

</html>

HTML YouTube Videos

Converting videos to different formats can be difficult and time-consuming.

An easier solution is to let YouTube play the videos in your web page.

To play your video on a web page, do the following:

• Upload the video to YouTube

• Take a note of the video id

• Define an <iframe> element in your web page

• Let the src attribute point to the video URL

• Use the width and height attributes to specify the dimension of the player

• Add any other parameters to the URL

Example 1

<!DOCTYPE html>

<html>

<body>

<iframe width="420" height="345"src="https://www.youtube.com/embed/tgbNymZ7vqY">

</iframe>

</body>

</html>

Example 2

<!DOCTYPE html>

<html>

<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/tgbNymZ7vqY?autoplay=1&mute=1">

</iframe>

</body>

</html>

YouTube Loop

Add playlist=videoID and loop=1 to let your video loop forever.

loop=0 (default) - The video will play only once.

loop=1 - The video will loop (forever).

<!DOCTYPE html>

<html>

<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/tgbNymZ7vqY?playlist=tgbNymZ7vqY&loop=1">

</iframe>

</body>

</html>

YouTube Controls

Add controls=0 to NOT display controls in the video player.

controls=0 - Player controls does not display.

controls=1 (default) - Player controls is displayed.

<!DOCTYPE html>

<html>

<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/tgbNymZ7vqY?controls=0">

</iframe>

</body>

</html>

HTML - Head Elements
HTML head elements define metadata like the title, character set, links to external
stylesheets, and other details. This information does not display on the webpage but is
helpful for the search engines and browsers. The head elements are placed inside
the <head> tag.

The following are the commonly used head elements:

• <title> Element

• <meta> Element

• <base> Element

• <link> Element

• <style> Element

• <script> Element

HTML <title> Element

The HTML <title> tag is used for specifying the title of the HTML document. The title must
describe the content of the web page, and its format should be text only. It appears in
the title bar of the browser's tab.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Title Tag Example</title>

</head>

<body>

 <p>Describing the use of title tag</p>

</body>

</html>

HTML <meta> Element

The HTML <meta> tag is used to provide metadata about an HTML document. The
metadata is nothing but additional information about the web page, including page expiry,
page author, list of keywords, page description, and so forth. This information is further
used for the purpose of search engine optimization. Remember, the metadata specified
by the <meta> tag is not displayed on the web page, but it is machine-readable. Its most
commonly used attributes are name, content, charset, and http-equiv.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Meta Tag Example</title>

 <!-- Provide list of keywords -->

 <meta name="keywords" content="C, C++, Java, PHP, Perl, Python">

 <!-- Provide description of the page -->

 <meta name="description" content="Simply Easy Learning by Tutorials Point">

 <!-- Author information -->

 <meta name="author" content="Tutorials Point">

 <!-- Page content type -->

 <meta http-equiv="content-type" content="text/html; charset=UTF-8">

 <!-- Page refreshing delay -->

 <meta http-equiv="refresh" content="30">

 <!-- Page expiry -->

 <meta http-equiv="expires" content="Wed, 21 June 2006 14:25:27 GMT">

 <!-- Tag to tell robots not to index the content of a page -->

 <meta name="robots" content="noindex, nofollow">

</head>

<body>

 <p>Describing the use of HTML meta tag</p>

</body>

</html>

HTML <base> Element

The HTML <base> tag is used for specifying the base URL for all relative URLs in a page,
which means all the other URLs will be concatenated into the base URL while locating
the given item. We are allowed to use only one base element in our HTML document. The
most frequently used attributes of the tag are hrefandtarget.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML Base Tag Example</title>

 <base href = "index.htm/" />

</head>

<body>

 HTML Tutorial

</body>

</html>

HTML <link> Element

In HTML, the <link> tag is used to specify relationships between the current webpage and
another external resource. The source of external resources is placed inside thehref
attribute. The other attributes of the tag are rel, type, and media. Its most common use
is to embed stylesheets into the HTML document.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML link Tag Example</title>

 <link rel="stylesheet" type="text/css" href="/css/style.css">

</head>

<body>

 <p>It is an example of linking stysheet to the current HTML document.</p>

</body>

</html>

HTML <style> Element

The HTML <style> tag is used to specify styles either for the whole HTML document or
for a particular element. Its most common attributes are title and media.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML style Tag Example</title>

 <base href="http://www.tutorialspoint.com/" />

 <style>

 .myclass{

 background-color: #aaa;

 padding: 10px;

 }

 </style>

</head>

<body>

 <p class="myclass">Hello, World!</p>

</body>

</html>

HTML <script> Element

The HTML <script> tag is used to include either an external script file or to define an
internal script for the HTML document. The script is an executable code that performs
some action.

Example

<!DOCTYPE html>

<html>

<head>

 <title>HTML script Tag Example</title>

 <base href="http://www.tutorialspoint.com/" />

 <script type="text/JavaScript">

 function Hello(){

 alert("Hello, World");

 }

 </script>

</head>

<body>

 <input type="button" onclick="Hello();" name="ok" value="OK" />

</body>

</html>

HTML - Favicon

HTML favicon stands for "favorite icon". It is a small-sized image that displays in the
browser's tab just before the page title. Favicon is defined by using the <link> tag with
the "rel=icon" attribute.

What is a HTML Favicon?

A favicon is a small image that represents your website and helps users identify it
among multiple tabs, bookmarks, and search results. It can be in various formats, such
as ICO, PNG, GIF, JPEG, or SVG, but ICO is the most widely supported format. If you have
ever visited a website and noticed a small icon next to the page title in your browser's
tab, you have seen a favicon.

How To Add a Favicon in HTML

You can add a favicon to a webpage by using the <link> tag with the rel attribute set
to "icon". The <link> tag is a head element, so it must be placed within the <head> tag.

Syntax

<head>

 <link rel="icon" href="path_to_favicon.ico" type="image/x-icon">

</head>

Steps to Add Favicon on Webpage

To add a favicon, we need to follow these simple steps mentioned below −

Step 1 − Create or choose an image for your favicon. Its common size could be 16x16
pixels or 32x32 pixels. There are a few online tools available that help us in creating a
favicon, such as "Favicon.io" and "ionos.com".

Step 2 − Save and upload the favicon image to the website directory. Make sure the
image is in a format that browsers can recognize, such as PNG, GIF, or ICO.

Step 3 − Now use the <link> element, which tells the browser where to find the favicon
image. Remember, the <link> tag comes inside the header part, i.e., <head> tag of the
HTML document.

Example

<!DOCTYPE html>

<html>

<head>

 <title>Tutorialspoint</title>

 <link rel = "icon" type = "image/png" href = "images/faviconTP.png">

</head>

<body>

 <h1>Adding Favivon</h1>

 <p>This is an example of including favicon to the web page.</p>

 <p> Favicon will be displayed in the browser tab to the left of the page title.</p>

</body>

</html>

Different Favicons for Different Pages on a Website?

Yes, different favicons can be added for different pages on a website. You need to define
the favicon images for different pages using the <link> tag (as discussed above) inside
the head.

Example

For Webpage 1:

<head>

 <title>Page Title 1</title>

 <link rel="icon" href="favicon1.ico" type="image/x-icon">

</head>

For Webpage 2:

<head>

 <title>Page Title 2</title>

 <link rel="icon" href="favicon2.ico" type="image/x-icon">

</head>

HTML Website Layout Methods

Creating Website Layouts

Creating a website layout is the activity of positioning the various elements that make a
web page in a well-structured manner and give appealing look to the website.

You have seen most websites on the internet usually display their content in multiple
rows and columns, formatted like a magazine or newspaper to provide the users a better
reading and writing environment. This can be easily achieved by using the HTML tags,
such as <table>, <div>, <header>, <footer>, <section>, etc. and adding some CSS styles to
them.

HTML Table Based Layout

Table provides the simplest way for creating layouts in HTML. Generally, this involves
the process of putting the contents such as text, images, and so on into rows and
columns.

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>HTML Table Layout</title>

</head>

<body style="margin:0px;">

<table style="width:100%; border-collapse:collapse; font:14px Arial,sans-serif;">

<tr> <td colspan="2" style="padding:10px 20px; background-color:#acb3b9;"> <h1
style="font-size:24px;">Tutorial Republic</h1> </td> </tr>

<tr style="height:170px;"> <td style="width:20%; padding:20px; background-color:#d4d7dc;
vertical-align: top;"> <ul style="list-style:none; padding:0px; line-height:24px;"> Home <a href="#"
style="color:#333;">About Contact
 </td>

<td style="padding:20px; background-color:#f2f2f2; vertical-align:top;"> <h2>Welcome to
our site</h2> <p>Here you will learn how to create websites...</p> </td>

 </tr>

<tr> <td colspan="2" style="padding:5px; background-color:#acb3b9; text-align:center;">
<p>copyright © pictacademy.com</p> </td> </tr>

</table>

 </body> </html>

HTML Div Based Layout

Using the <div> elements is the most common method of creating layouts in HTML.
The <div> (stands for division) element is used for marking out a block of content, or set
of other elements inside an HTML document. It can contain further other div elements if
required.

<!DOCTYPE html>

<html lang="en">

<head> <meta charset="utf-8">

<title>HTML Div Layout</title>

<style>

body { font: 14px Arial,sans-serif; margin: 0px; }

.header { padding: 10px 20px; background: #acb3b9; }

.header h1 { font-size: 24px; }

.container { width: 100%; background: #f2f2f2; }

.nav, .section { float: left; padding: 20px; min-height: 170px; box-sizing: border-box; }

.nav { width: 20%; background: #d4d7dc; }

.section { width: 80%; }

.nav ul { list-style: none; line-height: 24px; padding: 0px; }

.nav ul li a { color: #333; }

.clearfix:after { content: "."; display: block; height: 0; clear: both; visibility: hidden; }

.footer { background: #acb3b9; text-align: center; padding: 5px; }

</style>

</head>

<body>

<div class="container">

<div class="header"> <h1>Tutorial Republic</h1> </div>

<div class="wrapper clearfix">

<div class="nav"> Home About Contact </div>

<div class="section"> <h2>Welcome to our site</h2> <p>Here you will learn how to
create websites...</p> </div> </div>

<div class="footer">

<p>copyright © tutorialrepublic.com</p>

</div> </div>

</body> </html>

Using the HTML5 Structural Elements

HTML5 has introduced the new structural elements such
as <header>, <footer>, <nav>, <section>, etc. to define the different parts of a web page
in a more semantic way.

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>HTML5 Web Page Layout</title>

 <style>

body { font: 14px Arial,sans-serif; margin: 0px; }

header { padding: 10px 20px; background: #acb3b9; }

header h1 { font-size: 24px; }

.container { width: 100%; background: #f2f2f2; }

nav, section { float: left; padding: 20px; min-height: 170px; box-sizing: border-box; }
section { width: 80%; }

nav { width: 20%; background: #d4d7dc; }

nav ul { list-style: none; line-height: 24px; padding: 0px; }

nav ul li a { color: #333; }

.clearfix:after { content: "."; display: block; height: 0; clear: both; visibility: hidden; }

footer { background: #acb3b9; text-align: center; padding: 5px; }

</style>

</head>

<body>

<div class="container">

<header> <h1>Tutorial Republic</h1> </header>

<div class="wrapper clearfix">

<nav>

Home

About

Contact

</nav>

<section> <h2>Welcome to our site</h2> <p>Here you will learn how to create
websites...</p> </section>

</div>

<footer> <p>copyright © tutorialrepublic.com</p> </footer>

</div> </body> </html>

"Programming is a skill best acquired

by practice and example rather than

from books."

By Sardar Azeem(+92-313-5879331)

Section 3

css 5.0

WitH examples

tutorial

Lectured By : Sardar Azeem

What is CSS
CSS is the acronym for "Cascading Style Sheet". It's a style sheet language used for
describing the presentation of a document written in a markup language like HTML. CSS
helps the web developers to control the layout and other visual aspects of the web
pages. CSS plays a crucial role in modern web development by providing the tools
necessary to create visually appealing, accessible, and responsive websites.

CSS Versions

Since the inception of CSS, several versions have came into existence. Some of the
notable versions include:

• CSS1 (Cascading Style Sheets Level1) - The initial version of CSS, released in
December 1996. CSS1 provided basic styling capabilities for HTML documents,
including properties for text, colors, backgrounds, margins, and borders.

• CSS2 (Cascading Style Sheets Level2) - Released in May 1998, CSS2 introduced
new features such as positioning, z-index, media types, and more advanced
selectors like attribute selectors and child selectors.

• CSS2.1 - The version 2.1, published as a W3C Recommendation in June 2011,
clarified and refined CSS2, addressing inconsistencies and ambiguities in the
specification. CSS2.1 focused on improving interoperability among web browsers.

• CSS3 (Cascading Style Sheets Level 3) - CSS3 is a collection of modules that
extend the capabilities of CSS. It introduces numerous new features and
enhancements, including advanced selectors, multiple column layouts,
animations, transformations, gradients, shadows, and more.

• CSS4 (Cascading Style Sheets Level 4) - CSS4 is an ongoing effort to extend CSS3
with new features and enhancements.

Advantages of Using CSS

• Responsive design - CSS offers features like media queries that enable
developers to create responsive layouts that adapt to different screen sizes and
devices, ensuring a consistent user experience.

• Flexibility and Control - CSS provides precise control over the presentation
of HTML elements, allowing developers to customize layout, typography, colors,
and other visual properties.

• Consistency and Reusability - Developers can ensure consistency across the
entire website, by defining styles in a central CSS file. Styles can be reused across
multiple pages, reducing redundancy and making updates easier.

• Search Engine Optimization (SEO) - CSS can be used to structure content in a way
that improves search engine visibility.

• Ease of Maintenance - Centralized CSS files make it easier to maintain and update
styles across a website. Changes can be applied globally, ensuring uniformity and
reducing the risk of inconsistencies.

• Faster Page Loading - External CSS files can be cached by browsers, resulting in
faster page loading times for subsequent visits to a website. This caching
mechanism reduces server load and bandwidth consumption.

Components of CSS

CSS works by associating rules with HTML elements. A CSS rule contains two main
parts:

• a selector which specifies the HTML element(s) to style.

• a declaration block which contains one or more declarations separated by
semicolons.

CSS Example

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background-color: lightblue;

}

h1 {

 color: white;

 text-align: center;

}

p {

 font-family: verdana;

 font-size: 20px;

}

</style>

</head>

<body>

<h1>My First CSS Example</h1>

<p>This is a paragraph.</p>

</body>

</html>

CSS Syntax
Following is the syntax of styling using CSS.

selector {

 property: value;

}

• Selector: CSS selectors are used to select the HTML element or groups of
elements you want to style on a web page.

• Property: A CSS property is an aspect or characteristic of an HTML element that
can be styled or modified using CSS, such as color, font-size, or margin.

• Value: Values are assigned to properties. For example, color property can have
value like red, green etc.

Example

<!DOCTYPE html>

<html>

<head>

<style>

/* Style all the paragraphs */

p { background-color: black; color: white; padding: 5px; }

/* Style all elements with class 'special' */

.special { color: lightblue; /* Change text color */ }

</style>

</head>

<body>

<p> This a normal paragraph... </p>

<p class="special"> This is a paragraph with class special... </p>

<div class="special"> This is a div with class special... </div>

</body> </html>

CSS - Selectors
CSS Selectors are used to select the HTML elements you want to style on a web page.
They allow you to target specific elements or groups of elements to apply styles like
colors, fonts, margins, and more.

The element or elements that are selected by the selector are referred to as subject of
the selector.

CSS Universal Selector

CSS universal selector is a special selector that selects all the elements in an HTML
document. It is denoted by an asterisk mark (*).

Syntax

* {

 margin: 0;

 padding: 0;

}

Example

<html>

<head>

<style>

* { background-color: peachpuff; color: darkgreen; font-size: 25px; }

</style>

</head>

<body>

<h1>Universal selector (*)</h1>

<div>

Parent element

<p>Child paragraph 1</p>

<p>Child paragraph 2</p>

</div>

<p>Paragraph 3</p>

</body> </html>

CSS Element Selector

CSS element selector selects and styles specific HTML elements. The element selector
is defined by simply using the element's name in the stylesheet.

Syntax

p {

 color: green;

}

h1 {

 text-decoration-line: underline;

}

Example

<html>

<head>

<style>

div { border: 5px inset gold; width: 300px; text-align: center; }

p { color: green; }

h1 { text-decoration-line: underline; }

</style>

</head>

<body>

<div>

<h1>Type selector</h1>

<p>div with border and text-aligned to center</p>

<p>paragraph with green color</p>

<p>h1 with an underline</p>

</div>

</body> </html>

CSS Class Selector

CSS class selector selects an element with a specific class attribute. The class selector
is defined using a period (.) followed by the class name.

Syntax

.style-h1 {

 text-decoration-line: underline;

}

.style-p {

 color: green;

 font-size: 25px;

}

Example

<html>

<head>

<style>

.style-div { border: 5px inset gold; width: 300px; text-align: center; }

.style-p { color: green; font-size: 25px; }

.style-h1 { text-decoration-line: underline; }

</style>

</head>

<body>

<div class="style-div">

<h1 class="style-h1">class selector</h1>

<p class="style-p">class .style-p applied</p>

<p>No class applied on this p element</p>

</div>

</body> </html>

CSS ID Selector

CSS ID selector selects an element with a specific value for its id attribute. It is denoted
by the "#" (hash) symbol.

Syntax

#style-p {

 color: green;

 font-size: 25px;

}

#style-h1 {

 text-decoration-line: underline;

 color: red;

}

Example

<html>

<head>

<style>

#style-div { border: 5px inset purple; width: 300px; text-align: center; background-color:
lightgoldenrodyellow; }

#style-p { color: green; font-size: 25px; }

#style-h1 { text-decoration-line: underline; color: red; }

</style>

</head>

<body>

<div id="style-div">

<h1 id="style-h1">ID selector</h1>

<p id="style-p">id #style-p applied</p>

<p>No id applied on this p element</p>

</div>

</body> </html>

CSS Attribute Selector

CSS attribute selector selects an element based on a specific attribute or attribute
values on an element.

Syntax

a[target] {

 background-color: peachpuff;

}

You can also specify the element with an attribute having a specific value.

a[href="https://www.pictacademy.com"] {

 background-color: peachpuff;

}

Example

<html>

<head>

<style>

a[target] { background-color: #04af2f; color: white; font-size: 2em; }

</style>

</head>

<body>

<h2>Attribute selector</h2>

<p>Styling applied to anchor element with target attribute:</p>

Tutorialspoint

google

wikipedia

 </body> </html>

CSS Group Selector

CSS group selector allow us to apply same style to multiple elements at a time. Name
of elements are comma-separated. The group selector keep CSS concise and avoid
redundancy.

Syntax

h1, h2 {

 background-color: grey;

}

Example

<html>

<head>

<style>

/* This applies to both <h1> and <h2> elements */

h1, h2 { background-color: grey; padding: 4px; }

/*Applies to all paragraphs, elements with class*/ /*'highlight', and element with ID
'hightlightSpan'*/ p,

.highlight, #hightlightSpan { background-color: yellow; padding: 10px; }

</style>

</head>

<body>

<h1>CSS Selectors</h1>

<h2>Group Selectors</h2>

<p>This is a paragraph.</p>

<div class="highlight"> This is div </div>

 This is span

</body> </html>

CSS Pseudo-class Selector

CSS pseudo-class selector styles a specific state of an element, such as :hover is used
to style an element when hovered.

Syntax

a :hover {

 background-color: peachpuff;

 color: green;

 font-size: 2em;}

Example

<html>

<head>

<style>

 a:hover {

 background-color: peachpuff;

 color: green;

 font-size: 2em;

 }

</style>

</head>

<body>

 <h2>Pseudo-class selector</h2>

 <p>Styling applied to anchor element with a pseudo-class:</p>

 Tutorialspoint

</body>

</html>

CSS Pseudo-element Selector

CSS pseudo-element selector is used to style a specific part of an element rather than
the element itself.

Syntax

a::before {

 content: url();

}

Example

<html>

<head>

<style>

/* Add and style contents before paragraph */

p::before { content: "Note: "; font-weight: bold; color: red; }

 /* Add and style contents after paragraph */

p::after { content: " [Read more]"; font-style: italic; color: blue; }

</style>

</head>

<body>

 <h2>Pseudo-element selector</h2>

<p>This is a paragraph.</p>

</body>

 </html>

CSS Descendant Selector

CSS descendant selector styles all the tags which are child of a particular specified tag.
To mention as descendant, a single space between parent and child element is used.

Syntax

div p {

 color: blue;

}

Example

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{ border: 2px solid; }

div p { color: blue; }

</style>

</head>

<body>

<div>

<p> This paragraph is inside a div and will be blue. </p>

<section>

<p> This paragraph is inside a section which is inside a div and will also be blue. </p>
</section>

</div>

 <p> This paragraph is outside the div and will not be blue. </p> </body> </html>

CSS Child Selector

CSS child selector selects all the direct child of a particular element. This is denoted
by '>' (Greater than) symbol.

Syntax

div > p {

 color: blue;

}

Example

<!DOCTYPE html>

<html lang="en">

<head>

<style>

 div{ border: 2px solid; }

div > p { color: blue; }

</style>

</head>

<body>

<div>

<p> This paragraph is inside a div and will be blue. </p>

<section>

<p> This paragraph is inside a section which is inside a div and will not be blue as this is
not direct child </p>

</section>

</div>

 <p> This paragraph is outside the div and will not be blue. </p>

</body> </html>

CSS Adjacent Sibling Selectors

CSS adjacent sibling selector selects an element that is immediately preceded by a
specified element. A plus symbol ("+") is used to denote adjacent sibling.

Syntax

h1 + p {

 margin-top: 0;

}

Example

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{ border: 4px solid; }

div + p { color: blue; }

</style>

</head>

<body>

<p> This paragraph is above the div and will not be blue </p>

<div> <p> This paragraph is inside a div and will not be blue. </p> </div>

 <p> This paragraph 1 after the div and will be blue. </p>

<p>This paragraph 2 after the div and will not be blue. </p>

</body> </html>

CSS General Sibling Selector

general sibling selector targets all the element that is preceded by a specified element.
The general sibling selector is denoted by tilde symbol ("~").

Syntax

h1 ~ p {

 color: gray;

}

Example

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{ border: 4px solid; }

div ~ p { color: blue; }

</style>

</head>

<body>

<p> This paragraph is above the div and will not be blue </p>

<div> <p> This paragraph is inside a div and will not be blue. </p> </div>

<p> This paragraph 1 after the div and will be blue. </p>

<p>This paragraph 2 after the div and will be blue. </p>

</body> </html>

CSS Nested Selectors

CSS nesting allows to nest one style rule inside another rule, with the selector of the
child rule relative to the selector of the parent rule.

Characteristics

The nesting selector shows the relationship between the parent and child rules.

• When the nested selectors are parsed by the browser, it automatically adds a
whitespace between the selectors, thus creating a new CSS selector rule.

• In situations where the nested rule needs to be attached to the parent rule
(without any whitespace), like while using the pseudo-class or compound
selectors, the & nesting selector must be prepended immediately to achieve the
desired result.

• In order to reverse the context of rules, the & nesting selector can be appended.

• There can be multiple instances of & nesting selector.

Syntax

nav {

 & ul {

 list-style: none;

 & li {

 display: inline-block;

 & a {

 text-decoration: none;

 color: blue;

 &:hover {

 color: red;

 }

 }

 }

 }

}

Example

<html>

<head>

<style>

#sample { font-family: Verdana, Geneva, Tahoma, sans-serif; font-size: 1.5rem;

& a { color: crimson;

&:hover, &:focus { color: green; background-color: yellow;

}

}

}

</style>

</head>

<body>

<h1>& nesting selector</h1>

<p id="sample"> Hover over the link. </p>

 </body> </html>

How To Add CSS
There are three ways of inserting a style sheet:

• External CSS

• Internal CSS

• Inline CSS

External CSS

With an external style sheet, you can change the look of an entire website by changing
just one file!

Each HTML page must include a reference to the external style sheet file inside the <link>
element, inside the head section.

Main.html

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="mystyle.css">
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

Mystyle.css

body {
 background-color: lightblue;
}

h1 {
 color: navy;
 margin-left: 20px;
}

Internal CSS

An internal style sheet may be used if one single HTML page has a unique style.

The internal style is defined inside the <style> element, inside the head section.

Example

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: linen;
}

h1 {
 color: maroon;
 margin-left: 40px;
}
</style>
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

Inline CSS

An inline style may be used to apply a unique style for a single element.

To use inline styles, add the style attribute to the relevant element. The style attribute
can contain any CSS property.

Example

<!DOCTYPE html>
<html>
<body>

<h1 style="color:blue;text-align:center;">This is a heading</h1>
<p style="color:red;">This is a paragraph.</p>

</body>
</html>

CSS - Colors
CSS uses color values to specify a color. Typically, these are used to set a color either
for the foreground of an element (i.e. its text) or else for the background of the element.
They can also be used to affect the color of borders and other decorative effects.

You can specify your color values in various formats. Following table lists all the possible
formats.

Format Syntax Description Example

Keyword <property>:
<colorname>

CSS has a set of predefined
color names that you can
use directly.

red, blue, green, yellow,
black, white, etc.

Hexadecimal
Code

#RRGGBB Starts with a hash (#)
followed by six hexadecimal
digits.

#FF0000 - red

Short
Hexadecimal
Code

#RGB Shorter version of
hexadecimal format where
each of the RGB
components is represented
by a single digit, and the
value is duplicated.

#F00 - red

RGB rgb(red,green,blue) Colors can be defined using
the rgb() function, which
takes three parameters
representing the red, green,
and blue values.

rgb(0, 0, 255) - blue

RGBA rgba() Similar to RGB, with an
additional parameter for
the alpha (transparency)
value. 0 (fully transparent)
and 1 (fully opaque)

rgba(0,0,255,0.5) -
translucent blue

HSL hsl() Colors can be defined using
the rgb() function which
stands for Hue (0 to 360
degree), Saturation (%), and
Lightness (%).

hsl(120, 100%, 50%) -
pure green

HSLA hsla() Similar to HSL, with an
additional parameter for
the alpha (transparency)
value.

hsl(120, 100%, 50%, 0.5)
- translucent green

currentcolor
Keyword

currentcolor It refers to the value of the
color property of the
element.

color: red; /* Red text
color */ border: 10px
solid currentcolor; /*
Red border color */

System color as per OS or
browser

CSS allows usage of
system colors defined by
the user's OS or browser.

ButtonText, Window,
WindowText

CSS Color Names

In CSS, a color can be specified by using a predefined color name:

Example

<!DOCTYPE html>

<html>

<body>

<h1 style="background-color:Tomato;">Tomato</h1>

<h1 style="background-color:Orange;">Orange</h1>

<h1 style="background-color:DodgerBlue;">DodgerBlue</h1>

<h1 style="background-color:MediumSeaGreen;">MediumSeaGreen</h1>

<h1 style="background-color:Gray;">Gray</h1>

<h1 style="background-color:SlateBlue;">SlateBlue</h1>

<h1 style="background-color:Violet;">Violet</h1>

<h1 style="background-color:LightGray;">LightGray</h1>

</body>

</html>

CSS RGB Colors

In CSS, a color can be specified as an RGB value, using this formula:

rgb(red, green, blue)

Each parameter (red, green, and blue) defines the intensity of the color between 0 and
255.

For example, rgb(255, 0, 0) is displayed as red, because red is set to its highest value
(255) and the others are set to 0.

To display black, set all color parameters to 0, like this: rgb(0, 0, 0).

To display white, set all color parameters to 255, like this: rgb(255, 255, 255).

Example

<!DOCTYPE html>

<html>

<body>

<h1>Specify colors using RGB values</h1>

<h2 style="background-color:rgb(255, 0, 0);">rgb(255, 0, 0)</h2>

<h2 style="background-color:rgb(0, 0, 255);">rgb(0, 0, 255)</h2>

<h2 style="background-color:rgb(60, 179, 113);">rgb(60, 179, 113)</h2>

<h2 style="background-color:rgb(238, 130, 238);">rgb(238, 130, 238)</h2>

<h2 style="background-color:rgb(255, 165, 0);">rgb(255, 165, 0)</h2>

<h2 style="background-color:rgb(106, 90, 205);">rgb(106, 90, 205)</h2>

</body>

</html>

RGBA Value

RGBA color values are an extension of RGB color values with an alpha channel - which
specifies the opacity for a color.

An RGBA color value is specified with:

rgba(red, green, blue, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (not transparent
at all):

Example

<!DOCTYPE html>

<html>

<body>

<h1>Make transparent colors with RGBA</h1>

<h2 style="background-color:rgba(255, 99, 71, 0);">rgba(255, 99, 71, 0)</h2>

<h2 style="background-color:rgba(255, 99, 71, 0.2);">rgba(255, 99, 71, 0.2)</h2>

<h2 style="background-color:rgba(255, 99, 71, 0.4);">rgba(255, 99, 71, 0.4)</h2>

<h2 style="background-color:rgba(255, 99, 71, 0.6);">rgba(255, 99, 71, 0.6)</h2>

<h2 style="background-color:rgba(255, 99, 71, 0.8);">rgba(255, 99, 71, 0.8)</h2>

<h2 style="background-color:rgba(255, 99, 71, 1);">rgba(255, 99, 71, 1)</h2>

</body>

</html>

HEX Value

In CSS, a color can be specified using a hexadecimal value in the form:

#rrggbb

Where rr (red), gg (green) and bb (blue) are hexadecimal values between 00 and ff (same
as decimal 0-255).

For example, #ff0000 is displayed as red, because red is set to its highest value (ff) and
the others are set to the lowest value (00).

To display black, set all values to 00, like this: #000000.

To display white, set all values to ff, like this: #ffffff.

Example

<!DOCTYPE html>

<html>

<body>

<h1>Specify colors using HEX values</h1>

<h2 style="background-color:#ff0000;">#ff0000</h2>

<h2 style="background-color:#0000ff;">#0000ff</h2>

<h2 style="background-color:#3cb371;">#3cb371</h2>

<h2 style="background-color:#ee82ee;">#ee82ee</h2>

<h2 style="background-color:#ffa500;">#ffa500</h2>

<h2 style="background-color:#6a5acd;">#6a5acd</h2>

</body>

</html>

HSL Value

In CSS, a color can be specified using hue, saturation, and lightness (HSL) in the form:

hsl(hue, saturation, lightness)

Hue is a degree on the color wheel from 0 to 360. 0 is red, 120 is green, and 240 is blue.

Saturation is a percentage value. 0% means a shade of gray, and 100% is the full color.

Lightness is also a percentage. 0% is black, 50% is neither light or dark, 100% is white

Example

<!DOCTYPE html>

<html>

<body>

<h1>Specify colors using HSL values</h1>

<h2 style="background-color:hsl(0, 100%, 50%);">hsl(0, 100%, 50%)</h2>

<h2 style="background-color:hsl(240, 100%, 50%);">hsl(240, 100%, 50%)</h2>

<h2 style="background-color:hsl(147, 50%, 47%);">hsl(147, 50%, 47%)</h2>

<h2 style="background-color:hsl(300, 76%, 72%);">hsl(300, 76%, 72%)</h2>

<h2 style="background-color:hsl(39, 100%, 50%);">hsl(39, 100%, 50%)</h2>

<h2 style="background-color:hsl(248, 53%, 58%);">hsl(248, 53%, 58%)</h2>

</body>

</html>

HSLA Value

HSLA color values are an extension of HSL color values with an alpha channel - which
specifies the opacity for a color.

An HSLA color value is specified with:

hsla(hue, saturation, lightness, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (not transparent
at all):

Example

<!DOCTYPE html>

<html>

<body>

<h1>Make transparent colors with HSLA</h1>

<h2 style="background-color:hsla(9, 100%, 64%, 0);">hsla(9, 100%, 64%, 0)</h2>

<h2 style="background-color:hsla(9, 100%, 64%, 0.2);">hsla(9, 100%, 64%, 0.2)</h2>

<h2 style="background-color:hsla(9, 100%, 64%, 0.4);">hsla(9, 100%, 64%, 0.4)</h2>

<h2 style="background-color:hsla(9, 100%, 64%, 0.6);">hsla(9, 100%, 64%, 0.6)</h2>

<h2 style="background-color:hsla(9, 100%, 64%, 0.8);">hsla(9, 100%, 64%, 0.8)</h2>

<h2 style="background-color:hsla(9, 100%, 64%, 1);">hsla(9, 100%, 64%, 1)</h2>

</body>

</html>

CSS Backgrounds
CSS backgrounds define the background colors and images of HTML elements. They
allow you to use different colors, gradients, or images behind the content. In this chapter,
we will learn about various CSS background properties, including how to set background
colors, apply images, adjust their size and position, control repetition, and more.

CSS Backgrounds Examples.

CSS Background Shorthand Property

The background shorthand property allows you to specify all background properties in a
single declaration.The correct order of properties when using the shorthand background
property is as follows:

• background-color

• background-image

• background-position

• background-size (must be used with /)

• background-repeat

• background-origin

• background-attachment

• background-clip

Syntax

background: bg-color bg-image bg-position bg-size bg-repeat bg-origin bg-clip bg-
attachment | initial | inherit;

/* Example */

background: green url('image.jpg') top/20% no-repeat border-box content-box fixed;

Note: If background-size is to be added, it must be included immediately after
the background-position, separated with '/'. For example: "left/50%".

Setting Background Color

You can set the background color for elements like div, span, body, paragraph, etc using
the background-color property.

Example

<!DOCTYPE html>

<html>

<head>

<style>

body { background-color: lightgray; }

div{ padding: 25px; }

.firstDiv{ background-color: rgb(255, 215, 0); }

.secondDiv{ background-color: #f0f0f0; }

.thirdDiv{ background-color: hsl(120, 100%, 75%); }

</style>

</head>

<body>

<h2>CSS Background Colors</h2>

 Body Color: lightgray;

 <div class="firstDiv"> Color: rgb(255, 215, 0) </div>

<div class="secondDiv"> Color: #f0f0f0</div>

<div class="thirdDiv"> Color: hsl(120, 100%, 75%)</div>

</body> </html>

Setting Images in Background

To set an image as background for another element such as div, span, body, paragraph,
etc., you can use the background-image property. It can be used to set one or more than
one image as the background. To set multiple images as background, we separate the
images using commas.

Example

<!DOCTYPE html>

<html lang="en">

<head>

<style>

div{

background-color: rgba(255, 255, 255);

opacity: 70%;

padding: 20px;

}

body {

background-image: url(/css/images/logo.png);

height: 350px;

 }

</style>

</head>

<body>

<div>

 <h1>Welcome to My Website</h1>

 <p> This is an example of setting a background image using CSS </p>

 </div>

 </body> </html>

Define Background Position

The background-position property sets the initial position of the element's background
image. The position of the image is relative to the value set by the background-
origin property.

Example

<!DOCTYPE html>

<html>

<head>

<style>

.position-right { background-image: url('/css/images/logo.png'); background-position:
right; background-repeat: no-repeat; width: 100%; height: 300px; border: 3px solid
black; position: relative; }

</style>

</head>

<body>

<div class="position-right"></div>

</body> </html>

Setting Background Size

To set the size of the background image of an element, you can use the background-
size property. The background image can either be stretched, constrained, or left to its
normal size.

Example

<!DOCTYPE html>

<html> <head>

<style>

.size-contain { background-image: url('/css/images/pink-flower.jpg');

background-size: contain; width: 300px; height: 300px; }

</style>

</head>

<body>

<h2>CSS background-size property</h2>

<div class="size-contain"></div>

</body>

</html>

Repeating Background Image

You can control the repetition of the background images using the background-
repeat property. The image can be repeated along the horizontal and vertical axes, or
not repeated.

Example

<!DOCTYPE html>

<html>

<head>

<style>

.repeat { background-image: url('/css/images/logo.png');

background-repeat: repeat; width: 800px; height: 400px; position: relative;

}

</style>

</head>

<body>

<h2> CSS background-repeat property </h2>

<div class="repeat"></div>

</body> </html>

Defining Background Origin

CSS background-origin property is used to set the origin of the background, which could
be from the start of the border, inside the border, or inside the padding.

Example

<!DOCTYPE html>

<html>

<head>

<style>

div { border: 10px rgb(13, 7, 190); border-style: dashed; margin: 5px; padding: 1cm; font:
700 1em sans-serif; color: aliceblue; display: inline-block; background-image:
url('/css/images/yellow-flower.jpg'); height: 200px; width: 200px; background-size:
contain; } .content-box { background-origin: content-box; }

</style>

</head>

<body>

<div class="content-box"> </div>

<p> This image background start from content box of div element. </p>

</body>

</html>

Controlling Background Scrolling

You can use the background-attachment property to determine whether the position of
the background image is fixed within the viewport or scrolls within its container.

Example

<!DOCTYPE html>

<html>

<head>

<style>

.fixed { background-image: url('images/logo.png'); background-repeat: no-repeat;
background-attachment: fixed; background-position: left top; background-color:
lightblue; background-size: 40% 30%; padding: 5rem; width: 250px; height: 500px; }
</style>

</head>

<body>

<h2>CSS background-attachment Property</h2>

<div class="fixed">

<p> Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem
Ipsum has been the industry's standard dummy text ever since the 1500s, when an
unknown printer took a galley of type and scrambled it to make a type specimen book.
It has survived not only five centuries, but also the leap into electronic typesetting,
remaining essentially unchanged. It was popularized in the 1960s with the release of
Letraset sheets containing Lorem Ipsum passages, and more recently with desktop
publishing software like Aldus PageMaker including versions of Lorem Ipsum.

</p>

</div>

</body>

</html>

Controlling Background Display

You can use CSS background-clip property to specify how the background image or color
should be displayed within an element's padding box, border box, or content box. It
determines the area of an element to which the background will be applied.

Example

<!DOCTYPE html>

<html>

<head>

<style>

p { border: 10px dotted black; padding: 15px; background: green; color: white; } .border-
area { background-clip: border-box; }

.padding-area { background-clip: padding-box; }

</style>

</head>

<body>

<h2>CSS background-clip property</h2>

<p class="border-area"> Background applied to the entire element. </p>

<p class="padding-area"> Background applied to the content & padding area. </p>

</body> </html>

CSS Borders
The CSS border properties allow you to specify the style, width, and color of an element's
border.

CSS Border Style

The border-style property specifies what kind of border to display.

• dotted - Defines a dotted border

• dashed - Defines a dashed border

• solid - Defines a solid border

• double - Defines a double border

• groove - Defines a 3D grooved border. The effect depends on the border-color
value

• ridge - Defines a 3D ridged border. The effect depends on the border-color value

• inset - Defines a 3D inset border. The effect depends on the border-color value

• outset - Defines a 3D outset border. The effect depends on the border-color value

• none - Defines no border

• hidden - Defines a hidden border

The border-style property can have from one to four values (for the top border, right
border, bottom border, and the left border).

Example

<!DOCTYPE html>

<html>

<head>

<style>

p.dotted {border-style: dotted;}

p.dashed {border-style: dashed;}

p.solid {border-style: solid;}

p.double {border-style: double;}

p.groove {border-style: groove;}

p.ridge {border-style: ridge;}

p.inset {border-style: inset;}

p.outset {border-style: outset;}

p.none {border-style: none;}

p.hidden {border-style: hidden;}

p.mix {border-style: dotted dashed solid double;}

</style>

</head>

<body>

<h2>The border-style Property</h2>

<p>This property specifies what kind of border to display:</p>

<p class="dotted">A dotted border.</p>

<p class="dashed">A dashed border.</p>

<p class="solid">A solid border.</p>

<p class="double">A double border.</p>

<p class="groove">A groove border.</p>

<p class="ridge">A ridge border.</p>

<p class="inset">An inset border.</p>

<p class="outset">An outset border.</p>

<p class="none">No border.</p>

<p class="hidden">A hidden border.</p>

<p class="mix">A mixed border.</p>

</body>

</html>

CSS Border Width

The border-width property specifies the width of the four borders.

The width can be set as a specific size (in px, pt, cm, em, etc) or by using one of the three
pre-defined values: thin, medium, or thick:

<!DOCTYPE html>

<html>

<head>

<style>

p.one {

 border-style: solid;

 border-width: 5px;

}

p.two {

 border-style: solid;

 border-width: medium;

}

p.three {

 border-style: dotted;

 border-width: 2px;

}

p.four {

 border-style: dotted;

 border-width: thick;

}

p.five {

 border-style: double;

 border-width: 15px;

}

p.six {

 border-style: double;

 border-width: thick;

}

</style>

</head>

<body>

<p class="one">Some text.</p>

<p class="two">Some text.</p>

<p class="three">Some text.</p>

<p class="four">Some text.</p>

<p class="five">Some text.</p>

<p class="six">Some text.</p>

</body>

</html>

CSS Border Color

The border-color property is used to set the color of the four borders.

The color can be set by:

• name - specify a color name, like "red"

• HEX - specify a HEX value, like "#ff0000"

• RGB - specify a RGB value, like "rgb(255,0,0)"

• HSL - specify a HSL value, like "hsl(0, 100%, 50%)"

• Transparent

Example

<!DOCTYPE html>

<html>

<head>

<style>

p.one {

 border-style: solid;

 border-color: red;

}

p.two {

 border-style: solid;

 border-color: green;

}

p.three {

 border-style: dotted;

 border-color: blue;

}

</style>

</head>

<body>

<p class="one">A solid red border</p>

<p class="two">A solid green border</p>

<p class="three">A dotted blue border</p>

</body>

</html>

CSS Border - Individual Sides

From the examples on the previous pages, you have seen that it is possible to specify a
different border for each side.

In CSS, there are also properties for specifying each of the borders (top, right, bottom,
and left):

Example

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border-top-style: dotted;

 border-right-style: solid;

 border-bottom-style: dotted;

 border-left-style: solid;

}

</style>

</head>

<body>

<h2>Individual Border Sides</h2>

<p>2 different border styles.</p>

</body>

</html>

CSS Border - Shorthand Property

To shorten the code, it is also possible to specify all the individual border properties in
one property.

• border-width

• border-style (required)

• border-color

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border: 5px solid red;

}

</style>

</head>

<body>

<h2>The border Property</h2>

<p>This property is a shorthand property for border-width, border-style, and
border-color.</p>

</body>

</html>

CSS Rounded Borders

The border-radius property is used to add rounded borders to an element:

<!DOCTYPE html>

<html>

<head>

<style>

p.normal {

 border: 2px solid red;

 padding: 5px;

}

p.round1 {

 border: 2px solid red;

 border-radius: 5px;

 padding: 5px;

}

p.round2 {

 border: 2px solid red;

 border-radius: 8px;

 padding: 5px;

}

p.round3 {

 border: 2px solid red;

 border-radius: 12px;

 padding: 5px;

}

</style>

</head>

<body>

<p class="normal">Normal border</p>

<p class="round1">Round border</p>

<p class="round2">Rounder border</p>

<p class="round3">Roundest border</p>

</body>

</html>

CSS Margins
The CSS margin properties are used to create space around elements, outside of any
defined borders.

With CSS, you have full control over the margins. There are properties for setting the
margin for each side of an element (top, right, bottom, and left).

Margin - Individual Sides

CSS has properties for specifying the margin for each side of an element:

• margin-top

• margin-right

• margin-bottom

• margin-left

All the margin properties can have the following values:

• auto - the browser calculates the margin

• length - specifies a margin in px, pt, cm, etc.

• % - specifies a margin in % of the width of the containing element

• inherit - specifies that the margin should be inherited from the parent element

Example

<!DOCTYPE html>

<html>

<head>

<style>

div {

 border: 1px solid black;

 margin-top: 100px;

 margin-bottom: 100px;

 margin-right: 150px;

 margin-left: 80px;

 background-color: lightblue;

}

</style>

</head>

<body>

<h2>Using individual margin properties</h2>

<div>This div element has a top margin of 100px, a right margin of 150px, a bottom margin
of 100px, and a left margin of 80px.</div>

</body>

</html>

CSS Padding

Padding is used to create space around an element's content, inside of any defined
borders.

<!DOCTYPE html>

<html>

<head>

<style>

div {

 padding: 70px;

 border: 1px solid #4CAF50;

}

<!DOCTYPE html>

<html>

<head>

<style>

div {

 border: 1px solid black;

 background-color: lightblue;

 padding-top: 50px;

</style>

</head>

<body>

<h2>CSS Padding</h2>

<div>This element has a padding of
70px.</div>

</body>

</html>

 padding-right: 30px;

 padding-bottom: 50px;

 padding-left: 80px;

}

</style>

</head>

<body>

<h2>Using individual padding
properties</h2>

<div>This div element has a top padding of
50px, a right padding of 30px, a bottom
padding of 50px, and a left padding of
80px.</div>

</body>

</html>

CSS Height, Width and Max-width
The height and width properties are used to set the height and width of an element.

The height and width properties do not include padding, borders, or margins. It sets the
height/width of the area inside the padding, border, and margin of the element.

CSS height and width Values

The height and width properties may have the following values:

• auto - This is default. The browser calculates the height and width

• length - Defines the height/width in px, cm, etc.

• % - Defines the height/width in percent of the containing block

• initial - Sets the height/width to its default value

• inherit - The height/width will be inherited from its parent value

<!DOCTYPE html>

<html>

<head>

<style>

div {

 height: 50px;

 width: 100%;

<!DOCTYPE html>

<html>

<head>

<style>

div {

 height: 200px;

 width: 50%;

 border: 1px solid #4CAF50;

}

</style>

</head>

<body>

<h2>CSS height and width
properties</h2>

<div>This div element has a height of
50 pixels and a width of 100%.</div>

</body>

</html>

 background-color: powderblue;

}

</style>

</head>

<body>

<h2>Set the height and width of an
element</h2>

<div>This div element has a height of
200px and a width of 50%.</div>

</body>

</html>

Setting max-width

The max-width property is used to set the maximum width of an element.

The max-width can be specified in length values, like px, cm, etc., or in percent (%) of the
containing block, or set to none (this is default. Means that there is no maximum width).

<!DOCTYPE html>

<html>

<head>

<style>

div {

 max-width: 500px;

 height: 100px;

 background-color: powderblue;

}

</style>

</head>

<body>

<h2>Set the max-width of an element</h2>

<div>This div element has a height of 100px and a max-width of 500px.</div>

<p>Resize the browser window to see the effect.</p>

</body>

</html>

CSS Outline
An outline is a line that is drawn around elements, OUTSIDE the borders, to make the
element "stand out".

CSS has the following outline properties:

• outline-style

• outline-color

• outline-width

• outline-offset

• outline

CSS Outline Style

The outline-style property specifies the style of the outline, and can have one of the
following values:

• dotted - Defines a dotted outline

• dashed - Defines a dashed outline

• solid - Defines a solid outline

• double - Defines a double outline

• groove - Defines a 3D grooved outline

• ridge - Defines a 3D ridged outline

• inset - Defines a 3D inset outline

• outset - Defines a 3D outset outline

• none - Defines no outline

• hidden - Defines a hidden outline

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border: 2px solid black;

 outline: #4CAF50 solid 10px;

 margin: auto;

 padding: 20px;

 text-align: center;

}

</style>

</head>

<body>

<h2>CSS Outline</h2>

<p>This element has a 2px black border
and a green outline with a width of
10px.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

p {outline-color:red;}

p.dotted {outline-style: dotted;}

p.dashed {outline-style: dashed;}

p.solid {outline-style: solid;}

p.double {outline-style: double;}

p.groove {outline-style: groove;}

p.ridge {outline-style: ridge;}

p.inset {outline-style: inset;}

p.outset {outline-style: outset;}

</style>

</head>

<body>

<h2>The outline-style Property</h2>

<p class="dotted">A dotted outline</p>

<p class="dashed">A dashed outline</p>

<p class="solid">A solid outline</p>

<p class="double">A double outline</p>

<p class="groove">A groove outline. The
effect depends on the outline-color
value.</p>

<p class="ridge">A ridge outline. The effect
depends on the outline-color value.</p>

<p class="inset">An inset outline. The
effect depends on the outline-color
value.</p>

<p class="outset">An outset outline. The
effect depends on the outline-color
value.</p>

</body>

</html>

CSS Outline Width
The outline-width property specifies the width of the outline, and can have one of the
following values:

• thin (typically 1px)

• medium (typically 3px)

• thick (typically 5px)

• A specific size (in px, pt, cm, em, etc)

<!DOCTYPE html>

<html>

<head>

<style>

p.ex1 {

 border: 1px solid black;

 outline-style: solid;

 outline-color: red;

 outline-width: thin;

}

p.ex2 {

 border: 1px solid black;

 outline-style: solid;

 outline-color: red;

 outline-width: medium;

}

p.ex3 {

 border: 1px solid black;

 outline-style: solid;

 outline-color: red;

 outline-width: thick;

}

p.ex4 {

 border: 1px solid black;

 outline-style: solid;

 outline-color: red;

 outline-width: 4px;

}

</style>

</head>

<body>

<h2>The outline-width Property</h2>

<p class="ex1">A thin outline.</p>

<p class="ex2">A medium outline.</p>

<p class="ex3">A thick outline.</p>

<p class="ex4">A 4px thick outline.</p>

</body>

</html>

CSS Outline Color
The outline-color property is used to set the color of the outline.

The color can be set by:

• name - specify a color name, like "red"

• HEX - specify a hex value, like "#ff0000"

• RGB - specify a RGB value, like "rgb(255,0,0)"

• HSL - specify a HSL value, like "hsl(0, 100%, 50%)"

• invert - performs a color inversion (which ensures that the outline is visible,
regardless of color background)

<!DOCTYPE html>

<html>

<head>

<style>

p.ex1 {

 border: 2px solid black;

 outline-style: solid;

 outline-color: red;

}

p.ex2 {

 border: 2px solid black;

 outline-style: dotted;

 outline-color: blue;

}

p.ex3 {

 border: 2px solid black;

 outline-style: outset;

 outline-color: grey;

}

</style>

</head>

<body>

<h2>The outline-color Property</h2>

<p>The outline-color property is used to set the color of the outline.</p>

<p class="ex1">A solid red outline.</p>

<p class="ex2">A dotted blue outline.</p>

<p class="ex3">An outset grey outline.</p>

</body>

</html>

CSS Outline - Shorthand property
The outline property is a shorthand property for setting the following individual outline
properties:

• outline-width

• outline-style (required)

• outline-color

<!DOCTYPE html>

<html>

<head>

<style>

p.ex1 {outline: dashed;}

p.ex2 {outline: dotted red;}

p.ex3 {outline: 5px solid yellow;}

p.ex4 {outline: thick ridge pink;}

</style>

</head>

<body>

<h2>The outline Property</h2>

<p class="ex1">A dashed outline.</p>

<p class="ex2">A dotted red outline.</p>

<p class="ex3">A 5px solid yellow outline.</p>

<p class="ex4">A thick ridge pink outline.</p>

</body>

</html>

CSS Outline Offset
The outline-offset property adds space between an outline and the edge/border of an
element. The space between an element and its outline is transparent.

<!DOCTYPE html>

<html>

<head>

<style>

p {

 margin: 30px;

 border: 1px solid black;

 outline: 1px solid red;

 outline-offset: 15px;

}

</style>

</head>

<body>

<h2>The outline-offset Property</h2>

<p>This paragraph has an outline 15px outside the border edge.</p>

</body>

</html>

CSS Text

CSS has a lot of properties for formatting text.

<!DOCTYPE html>

<html>

<head>

<style>

div {

 border: 1px solid gray;

 padding: 8px;

}

h1 {

 text-align: center;

 text-transform: uppercase;

 color: #4CAF50;

}

p {

 text-indent: 50px;

 text-align: justify;

 letter-spacing: 3px;

}

a {

 text-decoration: none;

 color: #008CBA;

}

</style>

</head>

<body>

<div>

 <h1>text formatting</h1>

 <p>This text is styled with some of the text formatting properties. The heading uses
the text-align, text-transform, and color properties.

 The paragraph is indented, aligned, and the space between characters is specified.
The underline is removed from this colored

 "Try it Yourself" link.</p>

</div>

</body>

</html>

Text Color

The color property is used to set the color of the text. The color is specified by:

• a color name - like "red"

• a HEX value - like "#ff0000"

• an RGB value - like "rgb(255,0,0)"

<!DOCTYPE html>

<html>

<head>

<style>

body {

 color: blue;

}

h1 {

 color: green;

}

</style>

</head>

<body>

<h1>This is heading 1</h1>

<p>This is an ordinary paragraph.
Notice that this text is blue. The default
text color for a page is defined in the
body selector.</p>

<p>Another paragraph.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background-color: lightgrey;

 color: blue;

}

h1 {

 background-color: black;

 color: white;

}

div {

 background-color: blue;

 color: white;

}

</style>

</head>

<body>

<h1>This is a Heading</h1>

<p>This page has a grey background color
and a blue text.</p>

<div>This is a div.</div>

</body>

</html>

Text Alignment and Text Direction

In this chapter you will learn about the following properties:

• text-align

• text-align-last

• direction

• unicode-bidi

• vertical-align

Text Direction

The direction and unicode-bidi properties can be used to change the text

direction of an element:

Vertical Alignment

The vertical-align property sets the vertical alignment of an element.

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-align: center;

}

h2 {

 text-align: left;

}

h3 {

 text-align: right;

}

</style>

</head>

<body>

<!DOCTYPE html>

<html>

<head>

<style>

img.a {

 vertical-align: baseline;

}

img.b {

 vertical-align: text-top;

}

img.c {

 vertical-align: text-bottom;

}

img.d {

 vertical-align: sub;

<h1>Heading 1 (center)</h1>

<h2>Heading 2 (left)</h2>

<h3>Heading 3 (right)</h3>

<p>The three headings above are aligned
center, left and right.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

p.a {

 text-align-last: right;

}

p.b {

 text-align-last: center;

}

p.c {

 text-align-last: justify;

}

</style>

</head>

<body>

<h1>The text-align-last Property</h1>

}

img.e {

 vertical-align: super;

}

</style>

</head>

<body>

<h1>The vertical-align Property</h1>

<h2>vertical-align: baseline
(default):</h2>

<p>An <img class="a" src="sqpurple.gif"
width="9" height="9"> image with a default
alignment.</p>

<h2>vertical-align: text-top:</h2>

<p>An <img class="b" src="sqpurple.gif"
width="9" height="9"> image with a text-
top alignment.</p>

<h2>vertical-align: text-bottom:</h2>

<p>An <img class="c" src="sqpurple.gif"
width="9" height="9"> image with a text-
bottom alignment.</p>

<h2>vertical-align: sub:</h2>

<p>An <img class="d" src="sqpurple.gif"
width="9" height="9"> image with a sub
alignment.</p>

<h2>vertical-align: sup:</h2>

<h2>text-align-last: right:</h2>

<p class="a">Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Etiam semper
diam at erat pulvinar, at pulvinar felis
blandit. Vestibulum volutpat tellus diam,
consequat gravida libero rhoncus ut.</p>

<h2>text-align-last: center:</h2>

<p class="b">Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Etiam semper
diam at erat pulvinar, at pulvinar felis
blandit. Vestibulum volutpat tellus diam,
consequat gravida libero rhoncus ut.</p>

<h2>text-align-last: justify:</h2>

<p class="c">Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Etiam semper
diam at erat pulvinar, at pulvinar felis
blandit. Vestibulum volutpat tellus diam,
consequat gravida libero rhoncus ut.</p>

</body>

</html>

<p>An <img class="e" src="sqpurple.gif"
width="9" height="9"> image with a super
alignment.</p>

</body>

</html>

CSS Text Decoration

• text-decoration-line

• text-decoration-color

• text-decoration-style

• text-decoration-thickness

• text-decoration

Add a Decoration Line to Text

The text-decoration-line property is used to add a decoration line to text.

Specify a Color for the Decoration Line

The text-decoration-color property is used to set the color of the decoration line.

Specify a Style for the Decoration Line

The text-decoration-style property is used to set the style of the decoration line.

Specify the Thickness for the Decoration Line

The text-decoration-thickness property is used to set the thickness of the decoration
line.

The Shorthand Property

The text-decoration property is a shorthand property for:

• text-decoration-line (required)

• text-decoration-color (optional)

• text-decoration-style (optional)

• text-decoration-thickness (optional)

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-decoration: overline;

}

h2 {

 text-decoration: line-through;

}

h3 {

 text-decoration: underline;

}

p.ex {

 text-decoration: overline underline;

}

</style>

</head>

<body>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-decoration-line: overline;

 text-decoration-color: red;

}

h2 {

 text-decoration-line: line-through;

 text-decoration-color: blue;

}

h3 {

 text-decoration-line: underline;

 text-decoration-color: green;

}

p {

 text-decoration-line: overline underline;

 text-decoration-color: purple;

<h1>Overline text decoration</h1>

<h2>Line-through text decoration</h2>

<h3>Underline text decoration</h3>

<p class="ex">Overline and underline
text decoration.</p>

<p>Note: It is not
recommended to underline text that is
not a link, as this often confuses

the reader.</p>

</body>

</html>

}

</style>

</head>

<body>

<h1>Overline text decoration</h1>

<h2>Line-through text decoration</h2>

<h3>Underline text decoration</h3>

<p>Overline and underline text
decoration.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-decoration-line: underline;

 text-decoration-style: solid; /* this is
default */

}

h2 {

 text-decoration-line: underline;

 text-decoration-style: double;

}

h3 {

 text-decoration-line: underline;

 text-decoration-style: dotted;

}

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-decoration-line: underline;

 text-decoration-thickness: auto; /* this
is default */

}

h2 {

 text-decoration-line: underline;

 text-decoration-thickness: 5px;

}

h3 {

 text-decoration-line: underline;

 text-decoration-thickness: 25%;

}

p.ex1 {

 text-decoration-line: underline;

 text-decoration-style: dashed;

}

p.ex2 {

 text-decoration-line: underline;

 text-decoration-style: wavy;

}

p.ex3 {

 text-decoration-line: underline;

 text-decoration-color: red;

 text-decoration-style: wavy;

}

</style>

</head>

<body>

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<h3>Heading 3</h3>

<p class="ex1">A paragraph.</p>

<p class="ex2">Another paragraph.</p>

<p class="ex3">Another paragraph.</p>

</body>

</html>

p {

 text-decoration-line: underline;

 text-decoration-color: red;

 text-decoration-style: double;

 text-decoration-thickness: 5px;

}

</style>

</head>

<body>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-decoration: underline;

}

h2 {

 text-decoration: underline red;

}

h3 {

 text-decoration: underline red double;

}

p {

 text-decoration: underline red double 5px;

}

</style>

</head>

<body>

<h1>Heading 1</h1>

<h2>Heading 2</h2>

<h3>Heading 3</h3>

<p>A paragraph.</p>

</body>

</html>

Text Transformation

The text-transform property is used to specify uppercase and lowercase letters in a text.

<!DOCTYPE html>

<html>

<head>

<style>

p.uppercase {

 text-transform: uppercase;

}

p.lowercase {

 text-transform: lowercase;

}

p.capitalize {

 text-transform: capitalize;

}

</style>

</head>

<body>

<h1>Using the text-transform property</h1>

<p class="uppercase">This text is transformed to uppercase.</p>

<p class="lowercase">This text is transformed to lowercase.</p>

<p class="capitalize">This text is capitalized.</p>

</body>

</html>

CSS Text Spacing

Text Indentation

The text-indent property is used to specify the indentation of the first line of a text:

Letter Spacing

The letter-spacing property is used to specify the space between the characters in a
text.

Line Height

The line-height property is used to specify the space between lines:

Word Spacing

The word-spacing property is used to specify the space between the words in a text.

White Space

The white-space property specifies how white-space inside an element is handled.

Text Shadow

The text-shadow property adds shadow to text.

<!DOCTYPE html>

<html>

<head>

<style>

p {

 text-indent: 50px;

}

</style>

</head>

<body>

<h1>Using text-indent</h1>

<p>In my younger and more vulnerable
years my father gave me some advice that
I've been turning over in my mind ever
since. 'Whenever you feel like criticizing
anyone,' he told me, 'just remember that
all the people in this world haven't had the
advantages that you've had.'</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

h2 {

 letter-spacing: 5px;

}

h3 {

 letter-spacing: -2px;

}

</style>

</head>

<body>

<h1>Using letter-spacing</h1>

<h2>This is heading 1</h2>

<h3>This is heading 2</h3>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

<!DOCTYPE html>

<html>

<head>

<style>

p.small {

 line-height: 0.7;

}

p.big {

 line-height: 1.8;

}

</style>

</head>

<body>

<h1>Using line-height</h1>

<p>

This is a paragraph with a standard line-
height.

The default line height in most browsers
is about 110% to 120%.

</p>

<p class="small">

This is a paragraph with a smaller line-
height.

This is a paragraph with a smaller line-
height.

</p>

<p class="big">

This is a paragraph with a bigger line-
height.

This is a paragraph with a bigger line-
height.

</p>

p.one {

 word-spacing: 10px;

}

p.two {

 word-spacing: -2px;

}

</style>

</head>

<body>

<h1>Using word-spacing</h1>

<p>This is a paragraph with normal word
spacing.</p>

<p class="one">This is a paragraph with
larger word spacing.</p>

<p class="two">This is a paragraph with
smaller word spacing.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-shadow: 2px 2px 5px red;

}

</style>

</head>

<body>

<h1>Text-shadow effect!</h1>

</body>

</html>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

p {

 white-space: nowrap;

}

</style>

</head>

<body>

<h1>Using white-space</h1>

<p>

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

This is some text that will not wrap.

</p>

<p>Try to remove the white-space
property to see the difference!</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-shadow: 2px 2px;

}

</style>

</head>

<body>

<h1>Text-shadow effect!</h1>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

h1 {

 text-shadow: 2px 2px red;

}

</style>

</head>

<body>

<h1>Text-shadow effect!</h1>

</body>

</html>

CSS Icons

How To Add Icons

The simplest way to add an icon to your HTML page, is with an icon library, such as Font
Awesome.

Add the name of the specified icon class to any inline HTML element (like <i> or).

All the icons in the icon libraries below, are scalable vectors that can be customized with
CSS (size, color, shadow, etc.)

Font Awesome Icons

To use the Font Awesome icons, go to fontawesome.com, sign in, and get a code to add
in the <head> section of your HTML page:

<script src="https://kit.fontawesome.com/yourcode.js"
crossorigin="anonymous"></script>

Bootstrap Icons

To use the Bootstrap glyphicons, add the following line inside the <head> section of your
HTML page:

<link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">

Google Icons

To use the Google icons, add the following line inside the <head> section of your HTML
page:

<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">

<!DOCTYPE html>
<html>
<head>
<script src="https://kit.fontawesome.co
m/a076d05399.js" crossorigin="anonym
ous"></script>
</head>
<body>

<i class="fas fa-cloud"></i>
<i class="fas fa-heart"></i>
<i class="fas fa-car"></i>
<i class="fas fa-file"></i>
<i class="fas fa-bars"></i>

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://maxcdn.
bootstrapcdn.com/bootstrap/3.3.7/css/boot
strap.min.css">
</head>
<body>

<i class="glyphicon glyphicon-cloud"></i>
<i class="glyphicon glyphicon-remove"></i>
<i class="glyphicon glyphicon-user"></i>
<i class="glyphicon glyphicon-
envelope"></i>
<i class="glyphicon glyphicon-thumbs-
up"></i>

</body>
</html>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons"
>
</head>
<body>

<i class="material-icons">cloud</i>
<i class="material-icons">favorite</i>
<i class="material-icons">attachment</i>
<i class="material-icons">computer</i>
<i class="material-icons">traffic</i>

</body>
</html>

CSS Links

Styling Links

Links can be styled with any CSS property (e.g. color, font-family, background, etc.).

The four links states are:

• a:link - a normal, unvisited link

• a:visited - a link the user has visited

• a:hover - a link when the user mouses over it

• a:active - a link the moment it is clicked

Text Decoration

The text-decoration property is mostly used to remove underlines from links:

Background Color

The background-color property can be used to specify a background color for links:

Link Buttons

This example demonstrates a more advanced example where we combine several CSS
properties to display links as boxes/buttons:

<!DOCTYPE html>

<html>

<head>

<style>

a {

 color: hotpink;

}

</style>

</head>

<body>

<h2>Style a link with a color</h2>

<p><a href="default.asp"
target="_blank">This is a link</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

/* unvisited link */

a:link {

 color: red;

}

/* visited link */

a:visited {

 color: green;

}

/* mouse over link */

a:hover {

 color: hotpink;

}

/* selected link */

a:active {

 color: blue;

}

</style>

</head>

<body>

<h2>Styling a link depending on state</h2>

<p><a href="default.asp"
target="_blank">This is a link</p>

<p>Note: a:hover MUST come after
a:link and a:visited in the CSS definition in
order to be effective.</p>

<p>Note: a:active MUST come after
a:hover in the CSS definition in order to be
effective.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

a:link {

 text-decoration: none;

}

a:visited {

 text-decoration: none;

}

a:hover {

 text-decoration: underline;

}

a:active {

 text-decoration: underline;

}

</style>

</head>

<body>

<!DOCTYPE html>

<html>

<head>

<style>

a:link {

 background-color: yellow;

}

a:visited {

 background-color: cyan;

}

a:hover {

 background-color: lightgreen;

}

a:active {

 background-color: hotpink;

}

</style>

</head>

<body>

<h2>Styling a link with text-decoration
property</h2>

<p><a href="default.asp"
target="_blank">This is a link</p>

<p>Note: a:hover MUST come after
a:link and a:visited in the CSS definition in
order to be effective.</p>

<p>Note: a:active MUST come after
a:hover in the CSS definition in order to be
effective.</p>

</body>

</html>

<h2>Styling a link with background-color
property</h2>

<p><a href="default.asp"
target="_blank">This is a link</p>

<p>Note: a:hover MUST come after
a:link and a:visited in the CSS definition in
order to be effective.</p>

<p>Note: a:active MUST come after
a:hover in the CSS definition in order to be
effective.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

a:link, a:visited {

 background-color: #f44336;

 color: white;

 padding: 14px 25px;

 text-align: center;

 text-decoration: none;

 display: inline-block;

}

a:hover, a:active {

 background-color: red;

}

</style>

</head>

<body>

<h2>Link Button</h2>

<p>A link styled as a button:</p>

This is a link

</body>

</html>

CSS Lists

HTML Lists and CSS List Properties

In HTML, there are two main types of lists:

• unordered lists () - the list items are marked with bullets

• ordered lists () - the list items are marked with numbers or letters

The CSS list properties allow you to:

• Set different list item markers for ordered lists

• Set different list item markers for unordered lists

• Set an image as the list item marker

• Add background colors to lists and list items

Different List Item Markers

The list-style-type property specifies the type of list item marker.

An Image as The List Item Marker

The list-style-image property specifies an image as the list item marker:

Position The List Item Markers

The list-style-position property specifies the position of the list-item markers (bullet
points).

Remove Default Settings

The list-style-type:none property can also be used to remove the markers/bullets. Note
that the list also has default margin and padding. To remove this,
add margin:0 and padding:0 to or :

List - Shorthand property

The list-style property is a shorthand property. It is used to set all the list properties in
one declaration:

Styling List With Colors

We can also style lists with colors, to make them look a little more interesting.

<!DOCTYPE html>

<html>

<head>

<style>

ul.a {

 list-style-type: circle;

}

ul.b {

 list-style-type: square;

}

ol.c {

 list-style-type: upper-roman;

}

ol.d {

 list-style-type: lower-alpha;

}

</style>

</head>

<body>

<h2>The list-style-type Property</h2>

<p>Example of unordered lists:</p>

<ul class="a">

 Coffee

<!DOCTYPE html>

<html>

<head>

<style>

ul {

 list-style-image: url('sqpurple.gif');

}

</style>

</head>

<body>

<h2>The list-style-image Property</h2>

<p>The list-style-image property
specifies an image as the list item
marker:</p>

 Coffee

 Tea

 Coca Cola

</body>

</html>

 Tea

 Coca Cola

<ul class="b">

 Coffee

 Tea

 Coca Cola

<p>Example of ordered lists:</p>

<ol class="c">

 Coffee

 Tea

 Coca Cola

<ol class="d">

 Coffee

 Tea

 Coca Cola

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

ul.a {

 list-style-position: outside;

}

<!DOCTYPE html>

<html>

<head>

<style>

ul.demo {

 list-style-type: none;

 margin: 0;

ul.b {

 list-style-position: inside;

}

</style>

</head>

<body>

<h1>The list-style-position Property</h1>

<h2>list-style-position: outside
(default):</h2>

<ul class="a">

 Coffee - A brewed drink prepared
from roasted coffee beans, which are the
seeds of berries from the Coffea plant

 Tea - An aromatic beverage
commonly prepared by pouring hot or
boiling water over cured leaves of the
Camellia sinensis, an evergreen shrub
(bush) native to Asia

 Coca Cola - A carbonated soft drink
produced by The Coca-Cola Company. The
drink's name refers to two of its original
ingredients, which were kola nuts (a
source of caffeine) and coca leaves

<h2>list-style-position: inside:</h2>

<ul class="b">

 Coffee - A brewed drink prepared
from roasted coffee beans, which are the
seeds of berries from the Coffea plant

 Tea - An aromatic beverage
commonly prepared by pouring hot or
boiling water over cured leaves of the

 padding: 0;

}

</style>

</head>

<body>

<p>Default list:</p>

 Coffee

 Tea

 Coca Cola

<p>Remove bullets, margin and padding
from list:</p>

<ul class="demo">

 Coffee

 Tea

 Coca Cola

</body>

</html>

Camellia sinensis, an evergreen shrub
(bush) native to Asia

 Coca Cola - A carbonated soft drink
produced by The Coca-Cola Company. The
drink's name refers to two of its original
ingredients, which were kola nuts (a
source of caffeine) and coca leaves

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

ul {

 list-style: square inside
url("sqpurple.gif");

}

</style>

</head>

<body>

<h2>The list-style Property</h2>

<p>The list-style property is a shorthand
property, which is used to set all the list
properties in one declaration.</p>

 Coffee

 Tea

 Coca Cola

ol {
 background: #ff9999;
 padding: 20px;
}

ul {
 background: #3399ff;
 padding: 20px;
}

ol li {
 background: #ffe5e5;
 color: darkred;
 padding: 5px;
 margin-left: 35px;
}

ul li {
 background: #cce5ff;
 color: darkblue;
 margin: 5px;
}

</body>

</html>

CSS Tables
The look of an HTML table can be greatly improved with CSS.

<!DOCTYPE html>

<html>

<head>

<style>

#customers {

 font-family: Arial, Helvetica, sans-serif;

 border-collapse: collapse;

 width: 100%;

}

#customers td, #customers th {

 border: 1px solid #ddd;

 padding: 8px;

}

#customers tr:nth-child(even){background-color: #f2f2f2;}

#customers tr:hover {background-color: #ddd;}

#customers th {

 padding-top: 12px;

 padding-bottom: 12px;

 text-align: left;

 background-color: #04AA6D;

 color: white;

}

</style>

</head>

<body>

<h1>A Fancy Table</h1>

<table id="customers">

 <tr>

 <th>Company</th>

 <th>Contact</th>

 <th>Country</th>

 </tr>

 <tr>

 <td>Alfreds Futterkiste</td>

 <td>Maria Anders</td>

 <td>Germany</td>

 </tr>

 <tr>

 <td>Berglunds snabbköp</td>

 <td>Christina Berglund</td>

 <td>Sweden</td>

 </tr>

 <tr>

 <td>Centro comercial Moctezuma</td>

 <td>Francisco Chang</td>

 <td>Mexico</td>

 </tr>

 <tr>

 <td>Ernst Handel</td>

 <td>Roland Mendel</td>

 <td>Austria</td>

 </tr>

 <tr>

 <td>Island Trading</td>

 <td>Helen Bennett</td>

 <td>UK</td>

 </tr>

 <tr>

 <td>Königlich Essen</td>

 <td>Philip Cramer</td>

 <td>Germany</td>

 </tr>

 <tr>

 <td>Laughing Bacchus Winecellars</td>

 <td>Yoshi Tannamuri</td>

 <td>Canada</td>

 </tr>

 <tr>

 <td>Magazzini Alimentari Riuniti</td>

 <td>Giovanni Rovelli</td>

 <td>Italy</td>

 </tr>

 <tr>

 <td>North/South</td>

 <td>Simon Crowther</td>

 <td>UK</td>

 </tr>

 <tr>

 <td>Paris spécialités</td>

 <td>Marie Bertrand</td>

 <td>France</td>

 </tr>

</table>

</body>

</html>

Table Borders

To specify table borders in CSS, use the border property.

Full-Width Table

The table above might seem small in some cases. If you need a table that should span
the entire screen (full-width), add width: 100% to the <table> element:

Collapse Table Borders

The border-collapse property sets whether the table borders should be collapsed into a
single border:

<!DOCTYPE html>

<html>

<head>

<style>

table, th, td {

 border: 1px solid;

}

</style>

</head>

<body>

<h2>Add a border to a table:</h2>

<table>

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 </tr>

 <tr>

 <td>Peter</td>

 <td>Griffin</td>

 </tr>

 <tr>

<!DOCTYPE html>

<html>

<head>

<style>

table, th, td {

 border: 1px solid;

}

table {

 width: 100%;

}

</style>

</head>

<body>

<h2>Full-width Table</h2>

<table>

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 </tr>

 <tr>

 <td>Lois</td>

 <td>Griffin</td>

 </tr>

</table>

</body>

</html>

 <td>Peter</td>

 <td>Griffin</td>

 </tr>

 <tr>

 <td>Lois</td>

 <td>Griffin</td>

 </tr>

</table>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

table, td, th {

 border: 1px solid;

}

table {

 width: 100%;

 border-collapse: collapse;

}

</style>

</head>

<body>

<h2>Let the table borders collapse</h2>

<table>

 <tr>

 <th>Firstname</th>

 <th>Lastname</th>

 </tr>

 <tr>

 <td>Peter</td>

 <td>Griffin</td>

 </tr>

 <tr>

 <td>Lois</td>

 <td>Griffin</td>

 </tr>

</table>

</body>

</html>

Responsive Table

A responsive table will display a horizontal scroll bar if the screen is too small to display
the full content:

<!DOCTYPE html>

<html>

<head>

<style>

table {

 border-collapse: collapse;

 width: 100%;

}

th, td {

 text-align: left;

 padding: 8px;

}

tr:nth-child(even) {background-color: #f2f2f2;}

</style>

</head>

<body>

<h2>Responsive Table</h2>

<p>A responsive table will display a horizontal scroll bar if the screen is too

small to display the full content. Resize the browser window to see the effect:</p>

<p>To create a responsive table, add a container element (like div) with
overflow-x:auto around the table element:</p>

<div style="overflow-x: auto;">

 <table>

 <tr>

 <th>First Name</th>

 <th>Last Name</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 <th>Points</th>

 </tr>

 <tr>

 <td>Jill</td>

 <td>Smith</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 <td>50</td>

 </tr>

 <tr>

 <td>Eve</td>

 <td>Jackson</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 <td>94</td>

 </tr>

 <tr>

 <td>Adam</td>

 <td>Johnson</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 <td>67</td>

 </tr>

 </table>

</div>

</body>

</html>

CSS Layout - The z-index Property

The z-index Property

When elements are positioned, they can overlap other elements.

The z-index property specifies the stack order of an element (which element should be
placed in front of, or behind, the others).

An element can have a positive or negative stack order:

<!DOCTYPE html>

<html>

<head>

<style>

img {

 position: absolute;

 left: 0px;

 top: 0px;

 z-index: -1;

}

</style>

</head>

<body>

<h1>This is a heading</h1>

<p>Because the image has a z-index of -1, it will be placed behind the text.</p>

</body>

</html>

CSS Layout - Overflow
The overflow property specifies whether to clip the content or to add scrollbars when
the content of an element is too big to fit in the specified area.

The overflow property has the following values:

• visible - Default. The overflow is not clipped. The content renders outside the
element's box

• hidden - The overflow is clipped, and the rest of the content will be invisible

• scroll - The overflow is clipped, and a scrollbar is added to see the rest of the
content

• auto - Similar to scroll, but it adds scrollbars only when necessary

overflow: visible

By default, the overflow is visible, meaning that it is not clipped and it renders

outside the element's box:

overflow: hidden

With the hidden value, the overflow is clipped, and the rest of the content is hidden:

overflow: scroll

Setting the value to scroll, the overflow is clipped and a scrollbar is added to scroll inside
the box. Note that this will add a scrollbar both horizontally and vertically (even if you
do not need it):

overflow: auto

The auto value is similar to scroll, but it adds scrollbars only when necessary:

overflow-x and overflow-y

The overflow-x and overflow-y properties specifies whether to change the overflow of
content just horizontally or vertically (or both):

<!DOCTYPE html>

<html>

<head>

<style>

div {

<!DOCTYPE html>

<html>

<head>

<style>

div {

 background-color: coral;

 width: 200px;

 height: 65px;

 border: 1px solid;

 overflow: visible;

}

</style>

</head>

<body>

<h2>Overflow: visible</h2>

<p>By default, the overflow is visible,
meaning that it is not clipped and it
renders outside the element's box:</p>

<div>You can use the overflow property
when you want to have better control of
the layout. The overflow property
specifies what happens if content
overflows an element's box.</div>

</body>

</html>

 background-color: coral;

 width: 200px;

 height: 100px;

 border: 1px solid black;

 overflow: scroll;

}

</style>

</head>

<body>

<h2>Overflow: scroll</h2>

<p>Setting the overflow value to scroll, the
overflow is clipped and a scrollbar is
added to scroll inside the box. Note that
this will add a scrollbar both horizontally
and vertically (even if you do not need
it):</p>

<div>You can use the overflow property
when you want to have better control of
the layout. The overflow property
specifies what happens if content
overflows an element's box.</div>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

div {

 background-color: coral;

 width: 200px;

<!DOCTYPE html>

<html>

<head>

<style>

div {

 background-color: coral;

 width: 200px;

 height: 65px;

 border: 1px solid black;

 overflow: auto;

}

</style>

</head>

<body>

<h2>Overflow: auto</h2>

<p>The auto value is similar to scroll, only
it add scrollbars when necessary:</p>

<div>You can use the overflow property
when you want to have better control of
the layout. The overflow property
specifies what happens if content
overflows an element's box.</div>

</body>

</html>

 height: 65px;

 border: 1px solid black;

 overflow-x: hidden;

 overflow-y: scroll;

}

</style>

</head>

<body>

<h2>Overflow-x and overflow-y</h2>

<p>You can also change the overflow of
content horizontally or vertically.</p>

<p>overflow-x specifies what to do with
the left/right edges of the content.</p>

<p>overflow-y specifies what to do with
the top/bottom edges of the content.</p>

<div>You can use the overflow property
when you want to have better control of
the layout. The overflow property
specifies what happens if content
overflows an element's box.</div>

</body>

</html>

CSS Layout - float and clear
The float property is used for positioning and formatting content e.g. let an image float
left to the text in a container.

The float property can have one of the following values:

• left - The element floats to the left of its container

• right - The element floats to the right of its container

• none - The element does not float (will be displayed just where it occurs in the
text). This is default

• inherit - The element inherits the float value of its parent

<!DOCTYPE html>

<html>

<head>

<style>

img {

 float: right;

}

</style>

</head>

<body>

<h2>Float Right</h2>

<p>In this example, the image will float
to the right in the paragraph, and the
text in the paragraph will wrap around
the image.</p>

<p><img src="pineapple.jpg"
alt="Pineapple"
style="width:170px;height:170px;margin-
left:15px;">

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Phasellus
imperdiet, nulla et dictum interdum, nisi
lorem egestas odio, vitae scelerisque
enim ligula venenatis dolor. Maecenas
nisl est, ultrices nec congue eget,
auctor vitae massa. Fusce luctus
vestibulum augue ut aliquet. Mauris
ante ligula, facilisis sed ornare eu,
lobortis in odio. Praesent convallis urna
a lacus interdum ut hendrerit risus
congue. Nunc sagittis dictum nisi, sed
ullamcorper ipsum dignissim ac. In at
libero sed nunc venenatis imperdiet sed

<!DOCTYPE html>

<html>

<head>

<style>

img {

 float: left;

}

</style>

</head>

<body>

<h2>Float Left</h2>

<p>In this example, the image will float to
the left in the paragraph, and the text in
the paragraph will wrap around the
image.</p>

<p><img src="pineapple.jpg"
alt="Pineapple"
style="width:170px;height:170px;margin-
right:15px;">

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus imperdiet,
nulla et dictum interdum, nisi lorem
egestas odio, vitae scelerisque enim
ligula venenatis dolor. Maecenas nisl est,
ultrices nec congue eget, auctor vitae
massa. Fusce luctus vestibulum augue
ut aliquet. Mauris ante ligula, facilisis
sed ornare eu, lobortis in odio. Praesent
convallis urna a lacus interdum ut
hendrerit risus congue. Nunc sagittis
dictum nisi, sed ullamcorper ipsum
dignissim ac. In at libero sed nunc
venenatis imperdiet sed ornare turpis.

ornare turpis. Donec vitae dui eget
tellus gravida venenatis. Integer
fringilla congue eros non fermentum.
Sed dapibus pulvinar nibh tempor porta.
Cras ac leo purus. Mauris quis diam
velit.</p>

</body>

</html>

Donec vitae dui eget tellus gravida
venenatis. Integer fringilla congue eros
non fermentum. Sed dapibus pulvinar
nibh tempor porta. Cras ac leo purus.
Mauris quis diam velit.</p>

</body>

</html>

<!DOCTYPE html>

<html>

<head>

<style>

img {

 float: none;

}

</style>

</head>

<body>

<h2>Float None</h2>

<p>In this example, the image will be
displayed just where it occurs in the text
(float: none;).</p>

<p><img src="pineapple.jpg"
alt="Pineapple"
style="width:170px;height:170px;">

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus imperdiet, nulla
et dictum interdum, nisi lorem egestas
odio, vitae scelerisque enim ligula
venenatis dolor. Maecenas nisl est, ultrices
nec congue eget, auctor vitae massa. Fusce
luctus vestibulum augue ut aliquet. Mauris

<!DOCTYPE html>

<html>

<head>

<style>

div {

 float: left;

 padding: 15px;

}

.div1 {

 background: red;

}

.div2 {

 background: yellow;

}

.div3 {

 background: green;

}

</style>

</head>

<body>

ante ligula, facilisis sed ornare eu, lobortis
in odio. Praesent convallis urna a lacus
interdum ut hendrerit risus congue. Nunc
sagittis dictum nisi, sed ullamcorper ipsum
dignissim ac. In at libero sed nunc
venenatis imperdiet sed ornare turpis.
Donec vitae dui eget tellus gravida
venenatis. Integer fringilla congue eros non
fermentum. Sed dapibus pulvinar nibh
tempor porta. Cras ac leo purus. Mauris
quis diam velit.</p>

</body>

</html>

<h2>Float Next To Each Other</h2>

<p>In this example, the three divs will
float next to each other.</p>

<div class="div1">Div 1</div>

<div class="div2">Div 2</div>

<div class="div3">Div 3</div>

</body>

</html>

The clear Property

When we use the float property, and we want the next element below (not on right or
left), we will have to use the clear property.

The clear property specifies what should happen with the element that is next to a
floating element.

The clear property can have one of the following values:

• none - The element is not pushed below left or right floated elements. This is
default

• left - The element is pushed below left floated elements

• right - The element is pushed below right floated elements

• both - The element is pushed below both left and right floated elements

• inherit - The element inherits the clear value from its parent

<!DOCTYPE html>

<html>

<head>

<style>

div {

 border: 3px solid #4CAF50;

 padding: 5px;

}

<!DOCTYPE html>

<html>

<head>

<style>

div {

 border: 3px solid #4CAF50;

 padding: 5px;

}

.img1 {

 float: right;

}

.img2 {

 float: right;

}

.clearfix {

 overflow: auto;

}

</style>

</head>

<body>

<h2>Without Clearfix</h2>

<p>This image is floated to the right. It
is also taller than the element
containing it, so it overflows outside of
its container:</p>

<div>

 <img class="img1" src="pineapple.jpg"
alt="Pineapple" width="170"
height="170">

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Phasellus
imperdiet...

</div>

<h2 style="clear:right">With
Clearfix</h2>

.img1 {

 float: right;

}

.img2 {

 float: right;

}

.clearfix::after {

 content: "";

 clear: both;

 display: table;

}

</style>

</head>

<body>

<h2>Without Clearfix</h2>

<p>This image is floated to the right. It is
also taller than the element containing it,
so it overflows outside of its
container:</p>

<div>

 <img class="img1" src="pineapple.jpg"
alt="Pineapple" width="170" height="170">

 Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus imperdiet...

</div>

<h2 style="clear:right">With New Modern
Clearfix</h2>

<p>We can fix this by adding a clearfix
class with overflow: auto; to the
containing element:</p>

<div class="clearfix">

 <img class="img2"
src="pineapple.jpg" alt="Pineapple"
width="170" height="170">

 Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Phasellus
imperdiet...

</div>

</body>

</html>

<p>Add the clearfix hack to the containing
element, to fix this problem:</p>

<div class="clearfix">

 <img class="img2" src="pineapple.jpg"
alt="Pineapple" width="170" height="170">

 Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Phasellus imperdiet...

</div>

</body>

</html>

CSS Navigation Bar

Navigation Bar = List of Links

A navigation bar needs standard HTML as a base.

<!DOCTYPE html>

<html>

<body>

 Home

 News

 Contact

 About

<p>Note: We use href="#" for test links. In a real web site this would be URLs.</p>

</body>

</html>

Vertical Navigation Bar

<!DOCTYPE html>

<html>

<head>

<style>

body {

 margin: 0;

}

ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 width: 25%;

 background-color: #f1f1f1;

 position: fixed;

 height: 100%;

 overflow: auto;

}

li a {

 display: block;

 color: #000;

 padding: 8px 16px;

 text-decoration: none;

}

li a.active {

 background-color: #04AA6D;

 color: white;

}

CSS Horizontal Navigation Bar

<!DOCTYPE html>

<html>

<head>

<style>

ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 overflow: hidden;

 background-color: #333;

}

li {

 float: left;

}

li a {

 display: block;

 color: white;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

li a:hover:not(.active) {

 background-color: #111;

}

.active {

 background-color: #04AA6D;

}

li a:hover:not(.active) {

 background-color: #555;

 color: white;

}

</style>

</head>

<body>

 <a class="active"
href="#home">Home

 News

 Contact

 About

<div style="margin-left:25%;padding:1px
16px;height:1000px;">

 <h2>Fixed Full-height Side Nav</h2>

 <h3>Try to scroll this area, and see how
the sidenav sticks to the page</h3>

 <p>Notice that this div element has a left
margin of 25%. This is because the side
navigation is set to 25% width. If you
remove the margin, the sidenav will
overlay/sit on top of this div.</p>

 <p>Also notice that we have set
overflow:auto to sidenav. This will add a
scrollbar when the sidenav is too long (for
example if it has over 50 links inside of
it).</p>

 <p>Some text..</p>

 <p>Some text..</p>

 <p>Some text..</p>

 <p>Some text..</p>

</style>

</head>

<body>

 Home

 News

 Contact

 <li style="float:right"><a class="active"
href="#about">About

</body>

</html>

 <p>Some text..</p>

 <p>Some text..</p>

 <p>Some text..</p>

</div>

</body>

</html>

CSS Dropdowns
<!DOCTYPE html>

<html>

<head>

<style>

ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 overflow: hidden;

 background-color: #333;

}

li {

 float: left;

}

li a, .dropbtn {

 display: inline-block;

 color: white;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

li a:hover, .dropdown:hover .dropbtn {

 background-color: red;

}

li.dropdown {

 display: inline-block;

}

.dropdown-content {

 display: none;

 position: absolute;

 background-color: #f9f9f9;

 min-width: 160px;

 box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

 z-index: 1;

}

.dropdown-content a {

 color: black;

 padding: 12px 16px;

 text-decoration: none;

 display: block;

 text-align: left;

}

.dropdown-content a:hover {background-color: #f1f1f1;}

.dropdown:hover .dropdown-content {

 display: block;

}

</style>

</head>

<body>

 Home

 News

 <li class="dropdown">

 Dropdown

 <div class="dropdown-content">

 Link 1

 Link 2

 Link 3

 </div>

<h3>Dropdown Menu inside a Navigation Bar</h3>

<p>Hover over the "Dropdown" link to see the dropdown menu.</p>

</body>

</html>

CSS Image Gallery
<!DOCTYPE html>

<html>

<head>

<style>

div.gallery {

 margin: 5px;

 border: 1px solid #ccc;

 float: left;

 width: 180px;

}

div.gallery:hover {

 border: 1px solid #777;

}

div.gallery img {

 width: 100%;

 height: auto;

}

div.desc {

 padding: 15px;

 text-align: center;

}

</style>

</head>

<body>

<div class="gallery">

 <div class="desc">Add a description of the image here</div>

</div>

<div class="gallery">

 <div class="desc">Add a description of the image here</div>

</div>

<div class="gallery">

 <div class="desc">Add a description of the image here</div>

</div>

<div class="gallery">

 <div class="desc">Add a description of the image here</div>

</div>

</body>

</html>

CSS Forms
Resize the browser window to see the effect. When the screen is less than 600px wide,
make the two columns stack on top of each other instead of next to each other.

<!DOCTYPE html>

<html>

<head>

<style>

* {

 box-sizing: border-box;

}

input[type=text], select, textarea {

 width: 100%;

 padding: 12px;

 border: 1px solid #ccc;

 border-radius: 4px;

 resize: vertical;

}

label {

 padding: 12px 12px 12px 0;

 display: inline-block;

}

input[type=submit] {

 background-color: #04AA6D;

 color: white;

 padding: 12px 20px;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 float: right;

}

input[type=submit]:hover {

 background-color: #45a049;

}

.container {

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 20px;

}

.col-25 {

 float: left;

 width: 25%;

 margin-top: 6px;

}

.col-75 {

 float: left;

 width: 75%;

 margin-top: 6px;

}

/* Clear floats after the columns */

.row::after {

 content: "";

 display: table;

 clear: both;

}

/* Responsive layout - when the screen is less than 600px wide, make the two columns
stack on top of each other instead of next to each other */

@media screen and (max-width: 600px) {

 .col-25, .col-75, input[type=submit] {

 width: 100%;

 margin-top: 0;

 }

}

</style>

</head>

<body>

<h2>Responsive Form</h2>

<p>Resize the browser window to see the effect. When the screen is less than 600px
wide, make the two columns stack on top of each other instead of next to each
other.</p>

<div class="container">

 <form action="/action_page.php">

 <div class="row">

 <div class="col-25">

 <label for="fname">First Name</label>

 </div>

 <div class="col-75">

 <input type="text" id="fname" name="firstname" placeholder="Your name..">

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="lname">Last Name</label>

 </div>

 <div class="col-75">

 <input type="text" id="lname" name="lastname" placeholder="Your last name..">

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="country">Country</label>

 </div>

 <div class="col-75">

 <select id="country" name="country">

 <option value="australia">Australia</option>

 <option value="canada">Canada</option>

 <option value="usa">USA</option>

 </select>

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="subject">Subject</label>

 </div>

 <div class="col-75">

 <textarea id="subject" name="subject" placeholder="Write something.."
style="height:200px"></textarea>

 </div>

 </div>

 <div class="row">

 <input type="submit" value="Submit">

 </div>

 </form>

</div>

</body>

</html>

Website Layout
A website is often divided into headers, menus, content and a footer:

Header

A header is usually located at the top of the website (or right below a top navigation
menu). It often contains a logo or the website name:

Navigation Bar

A navigation bar contains a list of links to help visitors navigating through your website:

Content

The layout in this section, often depends on the target users. The most common layout
is one (or combining them) of the following:

• 1-column (often used for mobile browsers)

• 2-column (often used for tablets and laptops)

• 3-column layout (only used for desktops)

Unequal Columns

The main content is the biggest and the most important part of your site.

It is common with unequal column widths, so that most of the space is
reserved for the main content. The side content (if any) is often used as an

alternative navigation or to specify information relevant to the main content.
Change the widths as you like, only remember that it should add up to 100% in

total:

Footer

The footer is placed at the bottom of your page. It often contains information like
copyright and contact info:

Responsive Website Layout

By using some of the CSS code above, we have created a responsive website layout,
which varies between two columns and full-width columns depending on screen width:

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Website Layout</title>

<meta charset="utf-8">

<meta name="viewport"
content="width=device-width, initial-
scale=1">

<style>

body {

 margin: 0;

}

/* Style the header */

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

}

</style>

</head>

<body>

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Website Layout</title>

<meta charset="utf-8">

<meta name="viewport"
content="width=device-width, initial-
scale=1">

<style>

* {

 box-sizing: border-box;

}

body {

 margin: 0;

}

/* Style the header */

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

<div class="header">

 <h1>Header</h1>

</div>

</body>

</html>

}

/* Style the top navigation bar */

.topnav {

 overflow: hidden;

 background-color: #333;

}

/* Style the topnav links */

.topnav a {

 float: left;

 display: block;

 color: #f2f2f2;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

 background-color: #ddd;

 color: black;

}

</style>

</head>

<body>

<div class="header">

 <h1>Header</h1>

</div>

<div class="topnav">

 Link

 Link

 Link

</div>

</body>

</html>

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Website Layout</title>

<meta charset="utf-8">

<meta name="viewport"
content="width=device-width, initial-
scale=1">

<style>

* {

 box-sizing: border-box;

}

body {

 margin: 0;

}

/* Style the header */

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

}

/* Style the top navigation bar */

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Website Layout</title>

<meta charset="utf-8">

<meta name="viewport"
content="width=device-width, initial-
scale=1">

<style>

* {

 box-sizing: border-box;

}

body {

 margin: 0;

}

/* Style the header */

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

}

/* Style the top navigation bar */

.topnav {

 overflow: hidden;

 background-color: #333;

}

/* Style the topnav links */

.topnav a {

 float: left;

 display: block;

 color: #f2f2f2;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

 background-color: #ddd;

 color: black;

}

/* Create three equal columns that floats
next to each other */

.column {

 float: left;

 width: 33.33%;

 padding: 15px;

}

/* Clear floats after the columns */

.row::after {

 content: "";

.topnav {

 overflow: hidden;

 background-color: #333;

}

/* Style the topnav links */

.topnav a {

 float: left;

 display: block;

 color: #f2f2f2;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

 background-color: #ddd;

 color: black;

}

/* Create three unequal columns that
floats next to each other */

.column {

 float: left;

 padding: 10px;

}

/* Left and right column */

.column.side {

 width: 25%;

}

 display: table;

 clear: both;

}

/* Responsive layout - makes the three
columns stack on top of each other
instead of next to each other */

@media screen and (max-width:600px) {

 .column {

 width: 100%;

 }

}

</style>

</head>

<body>

<div class="header">

 <h1>Header</h1>

 <p>Resize the browser window to see
the responsive effect.</p>

</div>

<div class="topnav">

 Link

 Link

 Link

</div>

<div class="row">

 <div class="column">

 <h2>Column</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit

/* Middle column */

.column.middle {

 width: 50%;

}

/* Clear floats after the columns */

.row::after {

 content: "";

 display: table;

 clear: both;

}

/* Responsive layout - makes the three
columns stack on top of each other
instead of next to each other */

@media screen and (max-width: 600px) {

 .column.side, .column.middle {

 width: 100%;

 }

}

</style>

</head>

<body>

<div class="header">

 <h1>Header</h1>

 <p>Resize the browser window to see the
responsive effect.</p>

</div>

<div class="topnav">

 Link

amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 </div>

 <div class="column">

 <h2>Column</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 </div>

 <div class="column">

 <h2>Column</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 </div>

</div>

</body>

 Link

 Link

</div>

<div class="row">

 <div class="column side">

 <h2>Side</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit..</p>

 </div>

 <div class="column middle">

 <h2>Main Content</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 </div>

 <div class="column side">

 <h2>Side</h2>

</html> <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit..</p>

 </div>

</div>

</body>

</html>

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Website Layout</title>

<meta charset="utf-8">

<meta name="viewport"
content="width=device-width, initial-
scale=1">

<style>

* {

 box-sizing: border-box;

}

body {

 margin: 0;

}

/* Style the header */

.header {

 background-color: #f1f1f1;

 padding: 20px;

 text-align: center;

}

/* Style the top navigation bar */

.topnav {

<!DOCTYPE html>

<html>

<head>

<style>

* {

 box-sizing: border-box;

}

body {

 font-family: Arial;

 padding: 10px;

 background: #f1f1f1;

}

/* Header/Blog Title */

.header {

 padding: 30px;

 text-align: center;

 background: white;

}

.header h1 {

 font-size: 50px;

}

 overflow: hidden;

 background-color: #333;

}

/* Style the topnav links */

.topnav a {

 float: left;

 display: block;

 color: #f2f2f2;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

 background-color: #ddd;

 color: black;

}

/* Create three unequal columns that
floats next to each other */

.column {

 float: left;

 padding: 10px;

}

/* Left and right column */

.column.side {

 width: 25%;

}

/* Style the top navigation bar */

.topnav {

 overflow: hidden;

 background-color: #333;

}

/* Style the topnav links */

.topnav a {

 float: left;

 display: block;

 color: #f2f2f2;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

/* Change color on hover */

.topnav a:hover {

 background-color: #ddd;

 color: black;

}

/* Create two unequal columns that floats
next to each other */

/* Left column */

.leftcolumn {

 float: left;

 width: 75%;

}

/* Right column */

.rightcolumn {

/* Middle column */

.column.middle {

 width: 50%;

}

/* Clear floats after the columns */

.row::after {

 content: "";

 display: table;

 clear: both;

}

/* Responsive layout - makes the three
columns stack on top of each other
instead of next to each other */

@media screen and (max-width: 600px) {

 .column.side, .column.middle {

 width: 100%;

 }

}

/* Style the footer */

.footer {

 background-color: #f1f1f1;

 padding: 10px;

 text-align: center;

}

</style>

</head>

<body>

<div class="header">

 float: left;

 width: 25%;

 background-color: #f1f1f1;

 padding-left: 20px;

}

/* Fake image */

.fakeimg {

 background-color: #aaa;

 width: 100%;

 padding: 20px;

}

/* Add a card effect for articles */

.card {

 background-color: white;

 padding: 20px;

 margin-top: 20px;

}

/* Clear floats after the columns */

.row::after {

 content: "";

 display: table;

 clear: both;

}

/* Footer */

.footer {

 padding: 20px;

 text-align: center;

 background: #ddd;

 <h1>Header</h1>

 <p>Resize the browser window to see
the responsive effect.</p>

</div>

<div class="topnav">

 Link

 Link

 Link

</div>

<div class="row">

 <div class="column side">

 <h2>Side</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit..</p>

 </div>

 <div class="column middle">

 <h2>Main Content</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.
Praesent scelerisque tortor sed
accumsan convallis.</p>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Maecenas sit
amet pretium urna. Vivamus venenatis
velit nec neque ultricies, eget elementum
magna tristique. Quisque vehicula, risus
eget aliquam placerat, purus leo tincidunt
eros, eget luctus quam orci in velit.

 margin-top: 20px;

}

/* Responsive layout - when the screen is
less than 800px wide, make the two
columns stack on top of each other
instead of next to each other */

@media screen and (max-width: 800px) {

 .leftcolumn, .rightcolumn {

 width: 100%;

 padding: 0;

 }

}

/* Responsive layout - when the screen is
less than 400px wide, make the navigation
links stack on top of each other instead of
next to each other */

@media screen and (max-width: 400px) {

 .topnav a {

 float: none;

 width: 100%;

 }

}

</style>

</head>

<body>

<div class="header">

 <h1>My Website</h1>

 <p>Resize the browser window to see the
effect.</p>

</div>

Praesent scelerisque tortor sed
accumsan convallis.</p>

 </div>

 <div class="column side">

 <h2>Side</h2>

 <p>Lorem ipsum dolor sit amet,
consectetur adipiscing elit..</p>

 </div>

</div>

<div class="footer">

 <p>Footer</p>

</div>

</body>

</html>

<div class="topnav">

 Link

 Link

 Link

 Link

</div>

<div class="row">

 <div class="leftcolumn">

 <div class="card">

 <h2>TITLE HEADING</h2>

 <h5>Title description, Dec 7, 2017</h5>

 <div class="fakeimg"
style="height:200px;">Image</div>

 <p>Some text..</p>

 <p>Sunt in culpa qui officia deserunt
mollit anim id est laborum consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco.</p>

 </div>

 <div class="card">

 <h2>TITLE HEADING</h2>

 <h5>Title description, Sep 2, 2017</h5>

 <div class="fakeimg"
style="height:200px;">Image</div>

 <p>Some text..</p>

 <p>Sunt in culpa qui officia deserunt
mollit anim id est laborum consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco.</p>

 </div>

 </div>

 <div class="rightcolumn">

 <div class="card">

 <h2>About Me</h2>

 <div class="fakeimg"
style="height:100px;">Image</div>

 <p>Some text about me in culpa qui
officia deserunt mollit anim..</p>

 </div>

 <div class="card">

 <h3>Popular Post</h3>

 <div
class="fakeimg"><p>Image</p></div>

 <div
class="fakeimg"><p>Image</p></div>

 <div
class="fakeimg"><p>Image</p></div>

 </div>

 <div class="card">

 <h3>Follow Me</h3>

 <p>Some text..</p>

 </div>

 </div>

</div>

<div class="footer">

 <h2>Footer</h2>

</div>

</body>

</html>

CSS Gradients

CSS defines three types of gradients:

• Linear Gradients (goes down/up/left/right/diagonally)

• Radial Gradients (defined by their center)

• Conic Gradients (rotated around a center point)

CSS Linear Gradients

To create a linear gradient you must define at least two color stops. Color stops are the
colors you want to render smooth transitions among. You can also set a starting point
and a direction (or an angle) along with the gradient effect.

Syntax

background-image: linear-gradient(direction, color-stop1, color-stop2, ...);

CSS Radial Gradients

A radial gradient is defined by its center.

To create a radial gradient you must also define at least two color stops.

Syntax

background-image: radial-gradient(shape size at position, start-color, ..., last-color);

CSS Conic Gradients

A conic gradient is a gradient with color transitions rotated around a center point.

To create a conic gradient you must define at least two colors.

Syntax

background-image: conic-gradient([from angle] [at position,] color [degree],
color [degree], ...);

Section 4

Javascript

language

WitH examples

Lectured By: Sardar Azeem

What is JavaScript?
JavaScript (JS) is a programming language that lets developers create interactive web
pages. JavaScript is a lightweight, object-oriented programming language that is used
by several websites for scripting webpages.

JavaScript is an interpreted language that executes code line by line, providing more
flexibility. It is a single-threaded language that executes one task at a time. JavaScript
builds upon other programming languages, updating them based on user interactions
and other input.

Why learn JavaScript?
o Easy to Learn: JavaScript is beginner-friendly and easier to learn than many other

programming languages.

o Versatility: JavaScript can be used to develop websites, and you can use it on both
the server side and client side using Angular expressjs and Node.js.

o Client Side: JavaScript is the main language for client-side logic and is supported
by almost all browsers. It also offers several frameworks and libraries such as
ReactJS, AngularJS, and js.

o Server Side: It is widely used for building server-side applications because it
offers runtime environments like Node.js and frameworks like Express.js.

o Build Games: You can use JavaScript to create games, which can be 2D or 3D.

JavaScript Applications
As mentioned before, JavaScript is one of the most widely used programming
languages (Front-end as well as Back-end). It has its presence in almost every area of
software development. I'm going to list few of them here:

• Client side validation − This is really important to verify any user input before
submitting it to the server and JavaScript plays an important role in validating
those inputs at front-end itself.

• Manipulating HTML Pages − JavaScript helps in manipulating HTML page on the
fly. This helps in adding and deleting any HTML tag very easily using JavaScript
and modify your HTML to change its look and feel based on different devices and
requirements.

• User Notifications − You can use JavaScript to raise dynamic pop-ups on the
webpages to give different types of notifications to your website visitors.

• Back-end Data Loading − JavaScript provides Ajax library which helps in loading
back-end data while you are doing some other processing. This really gives an
amazing experience to your website visitors.

• Presentations − JavaScript also provides the facility of creating presentations
which gives website look and feel. JavaScript provides RevealJS and BespokeJS
libraries to build a web-based slide presentation.

• Server Applications − Node JS is built on Chrome's JavaScript runtime for
building fast and scalable network applications. This is an event based library
which helps in developing very sophisticated server applications including Web
Servers.

• Machine learning − Developers can use the ML5.js library to complete the task
related to machine learning.

• Game Developments − JavaScript contains multiple libraries and NPM packages
to design graphics for the game. We can use HTML, CSS, and JavaScript with
libraries to develop the games.

• Mobile applications − We can use frameworks like React Native to build feature-
rich mobile applications.

• Internet of Things (IoT) − JavaScript is used to add functionality to devices like
smartwatches, earbuds, etc.

• Data visualization − JavaScript contains the libraries like D3.js to visualize the
data efficiently. The D3.js is also used to prepare high-quality charts to visualize
the data.

• Cloud computing − We can use JavaScript in serverless computing platforms like
Cloudflare and AWS lambda to write and deploy functions on the cloud.

Frameworks and Libraries of JavaScript

ReactJS

It is a popular JavaScript library that Meta and the community developed. The original
author of ReactJS was Jordan Walke. It is a free and open-source front-end JavaScript
library, which means anybody can utilize this framework without paying a single penny.

JQuery

JQuery is one of the oldest frameworks of JavaScript. It was originally authorized by
John Resig. It is a free and open-source library that is used to create simple web
applications. It helps simplify HTML DOM elements, Ajax, CSS animations, and event
handling.

Vue.js

Vue.js is an open-source framework that is utilized to make user interfaces and single-
page applications. It was originally authorized by Evan You and was initially released in
February 2014.

AngularJS

AngularJS is a robust, free, and open-source JavaScript-based framework that Google
developed. AngularJS is used to simplify development and testing applications, and it is
utilized as the front-end of the MEAN stack.

Express.js

Express.js is a fast and open-source backend web application framework that TJ
Holowaychuk, StrongLoop, and others developed. The main use of Express.js is to create
complex web applications and APIs. It has become the prime choice when using the
Mean stack.

Ember.js

Ember.js is an open-source framework that was initially released on December 8, 2011.
It is used to create scalable SPAs. It is used on various websites such as Nordstrom,
HashiCrop, Apple Music, Live Nation, Twitch, Intercom, Ghost, Square etc. With the use
of this framework, developers can create desktop and mobile applications.

JavaScript Jobs
In the world, there are 15+ Million active JavaScript developers. Still, there is a shortage
of skilled JavaScript developers. So, it could be a great chance for you to start your
career as a JavaScript developer.

Here are the most popular companies offering the role of JavaScript developer. You can
land as an employee with a high package after pursuing your career as a JavaScript
developer.

• Amazon

• Google

• Microsoft

• Apple

• Adobe

• Facebook

• PayPal

• Many more...

Careers Opportunities in JavaScript

There are several career paths that you can choose after learning JavaScript. Here, we
have listed some of them.

• Front-end developer

• Back-end developer

• Full-stack developer

• Web developer

• Game developer

• Mobile App developer

• DevOps Engineer

• Many other roles

JavaScript Syntax
JavaScript syntax comprises a set of rules that define how to construct a JavaScript
code. JavaScript can be implemented using JavaScript statements that are placed within
the <script>... </script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within your web
page, but it is normally recommended that you should keep it within the <head> tags.

The <script> tag alerts the browser program to start interpreting all the text between
these tags as a script. A simple syntax of your JavaScript will appear as follows.

<script ...>

JavaScript code

</script>

The script tag takes two important attributes

• Language −This attribute specifies what scripting language you are using.

Typically, its value will be javascript. Although recent versions of HTML (and
XHTML, its successor) have phased out the use of this attribute.

• Type −This attribute is what is now recommended to indicate the scripting
language in use and its value should be set to "text/javascript". JavaScript has
become default lannguage in HTML5, and modern browsers, so now
adding type is not required.

So your JavaScript segment will look like −

<script language = "javascript" type = "text/javascript"> JavaScript code </script>

JavaScript Where To

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an HTML page.

The function is invoked (called) when a button is clicked:

Example

<!DOCTYPE html>
<html>
<head>
<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>
</head>
<body>

<h2>Demo JavaScript in Head</h2>
<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>

</body>
</html>

JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an HTML page.

The function is invoked (called) when a button is clicked:

Example

<!DOCTYPE html>
<html>
<body>

<h2>Demo JavaScript in Body</h2>

<p id="demo">A Paragraph</p>

<button type="button" onclick="myFunction()">Try it</button>

<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>

</body>
</html>

External JavaScript

Scripts can also be placed in external files:

External file: myScript.js

function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}

External scripts are practical when the same code is used in many different web pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src (source) attribute of
a <script> tag:

 <!DOCTYPE html>

<html>

<body>

<h2>Demo External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example links to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>

JavaScript Output Statements
JavaScript can "display" data in different ways:

• Writing into an HTML element, using innerHTML or innerText.

• Writing into the HTML output using document.write().

• Writing into an alert box, using window.alert().

• Writing into the browser console, using console.log().

Using innerHTML

To access an HTML element, you can use the document.getElementById(id) method.

Use the id attribute to identify the HTML element.

Then use the innerHTML property to change the HTML content of the HTML element:

Example

<!DOCTYPE html>
<html>
<body>
<h1>My First Web Page</h1>
<p>My First Paragraph</p>
<p id="demo"></p>
<script>
document.getElementById("demo").innerHTML = "<h2>Hello World</h2>";
</script>
</body>
</html>

Using document.write()

For testing purposes, it is convenient to use document.write():

Example

<!DOCTYPE html>
<html>
<body>
<h1>My First Web Page</h1>
<p>My first paragraph.</p>
<script>
document.write(5 + 6);
</script>
</body>
</html>

Using window.alert()

You can use an alert box to display data:

Example

<!DOCTYPE html>
<html>
<body>
<h1>My First Web Page</h1>
<p>My first paragraph.</p>
<script>
window.alert(5 + 6);
</script>
</body></html>

Using console.log()

For debugging purposes, you can call the console.log() method in the browser to display
data.

Example

<!DOCTYPE html>
<html>
<body>
<script>
console.log(5 + 6);
</script>
</body>
</html>

JavaScript Operators
In JavaScript, an operator is a special symbol or keyword that operates on one or more
operands to produce a result.

Types of JavaScript Operators

There are various operators that JavaScript supports. Such as:

1. Arithmetic Operators

2. Assignment Operators

3. Comparison Operators

4. Logical Operators

5. Bitwise Operators

6. Ternary Operators

7. Delete Operators

8. String Operators

9. Typeof Operators

10. Instanceof Operators

11. Chaining Operators

12. Comma Operators

1. Arithmetic Operators

In JavaScript, arithmetic operators are used to perform mathematical calculations like
addition, subtraction, multiplication, etc.

Operator Description Example

+ (Addition) It adds two operands. 10 + 2 // 12

- (Subtraction) Subtracts the second
number from the first.

10 - 2 // 8

* (Multiplication) It multiplies both operands. 5 * 2 // 10

/ (Division) It divides two operands. 10 / 2 // 5

% (Modulus) It gives the remainder of an
integer division.

5 % 2 // 1

++ (Increment) Increases an integer value
by one.

3++ or ++3 //4

-- (Decrement) Decreases an integer value
by one.

3-- or --3 //2

Example

const add = 3 + 3; //Addition

const sub = 4 - 1; //Subtraction

const a = 3 * 8; // Multiplication

const b = 4/2; //Division

console.log(add, sub, a, b);

2. Assignment Operators

Assignment operators in JavaScript are used to assign values to the variables.
Assignment operators can perform operations like addition or multiplication before
assigning the value.

Operator Description Example

= It assigns the value of the
right operand to the left
operand.

a = b+ c

+= (Add and) It adds the right operand
to the left operand and
assigns the result to the
left operand.

a += b // a = a + b

-= (Subtract and) This operator subtracts
the right operand from

a -= b // a = a - b

the left operand and
assigns the result to the
left operand.

*= (Multiply and) This operator multiplies
the right operand by the
left operand and assigns
the result to the left
operand.

a *= b // a = a * b

/= (Divide and) This operator divides the
left operand by the right
operand and assigns the
result to the left operand.

a /= b // a = a / b

% = (Modulus and) This operator takes
modulus using two
operands and assigns the
result to the left operand.

a %= b // a= a% b

Example

let a = 20;

a += 2;

a *= 3;

console.log(a);

3. Comparison Operators

Comparison Operators are used to compare two values and return a Boolean (true or
false). Comparison operators are useful for making decisions in conditional Statements.

Operator Description Example

== (Equal to) This operator checks if
the value of two operands
is equal or not.

2 == 2 gives us true.

!= (Not equal to) This operator is used to
check the inequality of
two operands.

2 != 3 gives us true.

> (Greater than) It is used to check if the
value of the left side is
greater than the right
side.

3 > 4 gives us false.

< (Less than) It is used to check if the
value of the right side is
greater than the left side.

4 < 5 gives us true.

>= (Greater than or equal
to)

This operator checks if
the value of the left
operand is greater than
or equal to the value of
the right operand.

3 >= 3 gives us true.

<= (Less than or equal
to)

This operator checks if
the value of the right
operand is greater than
or equal to the value of
the left operand.

3 <= 2 gives us false.

=== (Strictly equal to) This operator checks
whether the value and
data type of the variable
are equal or not.

2 === "2" gives us false.

!== (Strictly not equal to) This operator is used to
compare the inequality of
two operands and types.

2 === "2" gives us true.

Example

1. let a = 3;

2. let b = 5;

3. let result = a < b;

4. console.log(result);

4. Logical Operators

In JavaScript, logical operators are used to perform the logical operations that
determine the equality or difference between the values.

Operator Description Example

&& (Logical AND) This operator checks if
both the operands are
non-zero; then the
condition becomes true.

(expression1 &&
expression2)

|| (Logical OR) This operator checks if
any of the operands are
non-zero; then the
condition becomes true.

(expression1 ||
expression2)

! (Logical NOT) This operator reverses
the logical state of its
operand. If a condition is
true, then the Logical
NOT operator will make it
false.

!expression

Example

const p = true, q = false;

console.log(p && q);

console.log(p || q);

5. Bitwise Operators

In JavaScript, bitwise operators are used to perform operations on binary representative
of numbers. In other words, the bitwise operator performs the operations by converting
the integers into binary form.

o & performs a bitwise AND.

o | performs a bitwise OR.

o ^ performs a bitwise XOR.

o ~ performs a bitwise NOT.

Operator Description Example

& (Bitwise AND) The & operator is used to
perform a Boolean AND
operation on each bit of its
integer argument.

5 & 3 //1

| (Bitwise OR) It compares the
corresponding bits of two
operands. If either bit is 1,
the result bit will be 1;
otherwise, it's 0.

5 | 3 // 7

^ (Bitwise XOR) It returns 1 if the bits are
different and 0 if they are
the same.

5 ^ 3 //6

~ (Bitwise NOT) It inverts all the bits of its
operand. It changes each
0 to 1 and each 1 to 0.

~5 // -6

<< (Left shift) It shifts the bits of a
number to the left by a

5 << 1 // 10

specified number of
positions.

>> (right shift) It moves the bits of a
number to the right by a
specified number of
positions.

-10 >> 1 //-5

>>> (zero-fill right shift) It shifts the bits of a
number to the right by a
specified number of
positions and fills the
vacated bits on the left
and zeros.

-10 >>> 1 //2147483643

Example

console.log(3 & 1);

6. Ternary Operator

In JavaScript, the ternary operator makes use of three operands. It is also known as a
conditional operator.

Example

const age = 10;

const status= age >= 18? "Adult": "Minor";

console.log(status);

7. Delete Operator

In JavaScript, the delete operator is used to delete an object's property. The delete
operator deletes the value as well as the property. Once deleted, the property cannot be
used unless it has been added back.

The delete operator can be used only on properties of objects and not on variables or
functions.

Example

const student = {

 rollNum: 27,

 Name: "James Bond",

 Grade: "A",

 Age:19

};

delete student.Age;

console.log(student);

8. String Operator

In JavaScript, string operators take two strings and combine them into one single string.
String operators are binary operators and you need to use the + symbol between the
two string operands to concatenate them into a single string.

Example

str1 = "SardarAzeem";

str2 = "Tech";

result = str1 + str2;

console.log(result);

9. Typeof Operator

In JavaScript, the typeof operator is an operator that is used for type checking and
returns the data type of the operand passed to it. The operand can be any variable,
function, or object whose type you want to find out using the typeof operator.

Example

console.log(typeof "SardarAzeemech");

console.log(typeof 50);

console.log(typeof false);

console.log(typeof {});

console.log(typeof undefined);

10. Instanceof Operator

Instanceof operator checks if the given object is an instance of the specified object. If it
is then we get true, else we get false.

Example

const n = [1, 2, 23, 4];

console.log(n instanceof Array);

console.log(n instanceof Object);

console.log(n instanceof Number);

console.log(n instanceof String);

What Are JavaScript Comments?
The JavaScript comments are a meaningful way to deliver the message. It is used to add
information about the code, warnings or suggestions so that the end user can easily
interpret the code.

Lines of text that are ignored by the JavaScript engine during code execution are known
as comments. For developers who read or update the code afterwards, they act as notes
or clarifications.

Effective use of comments is helpful:

o Make the code easier to read.

o Describe complex logic.

o Parts of the code can be temporarily disabled for debugging.

o Provide future developers with helpful documentation.

Types of JavaScript Comments

There are two types of comments in JavaScript.

1. Single-line Comment

2. Multi-line Comment

JavaScript Single line Comment

It is represented by double forward slashes (//). It can be used before and after the
statement.

Comments of just one line are wanted for small observations or explanations. Two
forward slashes (//) are used at the start. JavaScript ignores anything that comes after
// on the same line.

Syntax

The single-line comment is displayed in the syntax.

// This is a single-line comment

Example 1

//A single line comment

sole.log("SardarAzeem");

Example 2

let a = 10;// declare a, give it the value of 10

let b = a + 21; // declare b, give it the value of a + 21

console.log(b);// printing b

JavaScript Multi-line Comment

A forward slash with an asterisk represents it, then an asterisk with a forward slash.

You can write longer descriptions with multi-line comments. They end with */ and start
with /*. All of it is considered a comment.

Syntax

/* your code here */

Example

/* It is a multi-line comment.

It will not be displayed */

console.log("Welcome to SardarAzeem");

JavaScript Variables
In JavaScript, a variable is a named storage location that holds a value, which can be
any data type, such as numbers, strings, objects, etc. It can be declared using keywords
like var, let, or const.

o Variables as Placeholders for unknown values: They can be used in places where
the values they represent are unknown when the code is written.

o Variables as Code Clarifies: They can make the purpose of your code cleaner.

Rules of Naming Variables in JavaScript

o Name must start with a letter (a to z or A to Z), underscore(_), or dollar($) sign.

o After the first letter, we can use digits (0 to 9), for example, value1.

o JavaScript variables are case-sensitive; for example, x and X are different
variables.

Declaring Variables in JavaScript

You can use the "var" or "let" keywords to declare text as a variable. There are three
methods to declare a variable in JavaScript:

Using var keyword

In JavaScript, variables were traditionally declared using the var keyword. It is not used
in contemporary programming due to certain problems with scope and complicated
operations.

var a = "SardarAzeem";

console.log(a);

https://www.tpointtech.com/javascript-tutorial
https://www.tpointtech.com/javascript-data-types
https://www.tpointtech.com/javascript-number
https://www.tpointtech.com/javascript-string
https://www.tpointtech.com/javascript-objects

Using let keyword

The variables with block scope are declared using the let keyword. It is only available
within the block in which they are specified in the JavaScript function.

let a = 20;

console.log(a);

Using const keyword

Constant variables are used to avoid modification, and they cannot change value after
they are declared variables. It is a represented variable using the const keyword in
JavaScript.

const p = "SardarAzeem";

console.log(p);

JavaScript Variable Data Types

Different types of data can be stored in JavaScript variables. These are the primary
types:

o String: Strings represent text values.

o Number: The number represents numerical values.

o Boolean: True or false is represented by boolean.

o Undefined: A declared variable without a value given to it.

o Null:It indicates a purposefully empty value.

o Object: Key-value pairs are represented by objects.

o Array: A collection of values is represented by an array.

Types of Variables

The types of variables are used according to operation and values. If you have to use a
single value multiple times, then use global; otherwise, use the local variable. There are
following two types of variables in JavaScript:

o Local variable

o Global variable

JavaScript Local Variable

JavaScript local variables are declared inside the curly braces {} or a function. In
JavaScript, variables are accessible within the function or block only where they are
declared.

Local variables with the same name can be used in different functions or blocks. Local
variables are deleted after the function is completed.

https://www.tpointtech.com/javascript-function

Example 1

myfunction();

function myfunction(){

 //Local variable

 let word = "SardarAzeem";

 console.log(word);

}

console.log(word);

Example 2

mydemo1();

mydemo2();

let word;

function mydemo1(){

 //Local variable

 let word = "SardarAzeem";

 console.log(word);

}

function mydemo2(){

 //Local variable

 let word = "SardarAzeem";

 console.log(word);

}

console.log(word);

JavaScript Global Variable

In JavaScript, Global variables are those variables that are declared outside of any
function and can be accessible from anywhere within the script, including these
functions.

https://www.tpointtech.com/javascript-global-variable

Example:

var Grade = "B";

// Declaring global variable outside the function

myFunction();

// Global variable accessed from

// Within a function

function myFunction() {

 console.log("global value of Grade is: ", Grade);

}

// Changing value of global

// Variable from outside of function

{

 Grade = "A";

 console.log("local value of Grade is: ", Grade);

}

The Best Ways to Use JavaScript Variables

o Use let and const: Avoid using var to avoid scope-related problems by using let
and const instead.

o Use meaningful variable names: Select names that are descriptive and help the
reader understand the code.

o Use the camelCase naming convention: JavaScript variables should be named
using the camelCase format (myVariableName as an example).

o Use const: when the variable should not change or unwanted modifications
should be avoided.

o Declare variables at the start of a block: the variable declaration is used to
improve readability and prevent problems with hoisting.

o Clear the global variables: use local variables whenever feasible to avoid
unforeseen changes.

Data Types in JavaScript
There are two types of variables in JavaScript-data type and user-defined. So, in sum,
there exist five data types in JavaScript which are described in the following:

Number

The number is one of the primitive data types in JavaScript. Of special interest is that
JavaScript uses a single data type for numbers. It does not distinguish between float,
decimal, or double types like most programming languages.

Example

let a = 12;

console.log(a)

let b = 10.3;

console.log(b)

let c = Infinity;

console.log(c)

let d = 'something here too' / 2;

console.log(d)

String

String is one of the most basic data types in JavaScript. It is, in essence, a sequence of
characters or words. Let's look at the following example.

Example

let a = "TpointTech";

console.log(a);

let b = 'Single quotes work fine';

console.log(b);

let c = `can embed ${a}`;

console.log(c);

Boolean

Boolean is one of the primitive data types in JavaScript. It can take two values: true and
false. In JavaScript, Boolean values are used to evaluate conditions. This feature is very
helpful in validating different scenarios in the language.

Example

let p = true;

console.log(p);

let q = false;

console.log(q);

Undefined

Undefined is a basic data type in JavaScript. It is any variable that can be declared but
not assigned any value. Thus, such a variable automatically contains the default value of
undefined within JavaScript. In short, it identifies a variable that does not have an
assigned value.

Example

let a;

console.log(a);

Null

In JavaScript, null is a primitive data type. There are times when it is imperative to assign
the Null value if a particular value needs to be assigned as deliberately empty. For
example, during runtime, there may be some condition that calls for user input, and for
such a condition, the Null data type can be used.

Example

let age = null;

console.log(age)

Non-Primitive Data Types in JavaScript

The non-primitive data types available in JavaScript include both Objects and Arrays. In
addition, ECMAScript has added another data type known as Symbol.

Object

The Object data type is a core element of the JavaScript programming language. Objects
can be created using object literal syntax, which is defined by key-value pairs.

To better understand this concept, one can analyze the following example.

Example

let tpointTech = {

 type: "Company",

 location: "Noida"

}

console.log(tpointTech.type)

console.log(tpointTech.location)

Arrays

An array is a special object which is defined to hold a sequential list of values, and it can
store values of different data types.

Example

let a = [1, 2, 3, 4, 5];

console.log(a);

let b = [1, "two", { name: "Object" }, [3, 4, 5]];

console.log(b);

Function

A function in JavaScript is a reusable piece of code that is defined specifically to execute
a particular task when it is called.

Example

// Defining a function to greet a user

function greet(name) { return "Hello, " + name + "!"; }

// Calling the function

console.log(greet("Alice"));

Date Object

JavaScript's Date object is designed for date and time management, and it supports the
creation, manipulation, and formatting of date values.

Example

// Creating a new Date object for the current date and time

let currentDate = new Date();

// Displaying the current date and time

console.log(currentDate);

Regular Expression

A Regular Expression (RegExp) in JavaScript is an object which is used to define
patterns to search for text within strings.

Example

// Creating a regular expression to match the word "hello"

let pattern = /hello/;

// Testing the pattern against a string

let result = pattern.test("Hello, TpointTech");

console.log(result);

JavaScript Control Structures
The JavaScript if-else statement is used to execute the code whether condition is true
or false. There are three forms of if statement in JavaScript.

1. If Statement

2. If else statement

3. if else if statement

JavaScript If statement

It evaluates the content only if expression is true. The signature of JavaScript if
statement is given below.

if(expression){

//content to be evaluated

}

Flowchart of JavaScript If statement

<script>

var a=20;

if(a>10){

document.write("value of a is greater than 10");

}

</script>

JavaScript If...else Statement

It evaluates the content whether condition is true of false. The syntax of JavaScript if-
else statement is given below.

if(expression){

//content to be evaluated if condition is true

}

else{

//content to be evaluated if condition is false

}

Example of if-else statement in JavaScript to find out the even or odd
number.

<script>

var a=20;

if(a%2==0){

document.write("a is even number");

}

else{

document.write("a is odd number");

}

</script>

JavaScript If...else if statement

It evaluates the content only if expression is true from several expressions. The
signature of JavaScript if else if statement is given below.

if(expression1){

//content to be evaluated if expression1 is true

}

else if(expression2){

//content to be evaluated if expression2 is true

}

else if(expression3){

//content to be evaluated if expression3 is true

}

else{

//content to be evaluated if no expression is true

}

Example

<script>

var a=20;

if(a==10){

document.write("a is equal to 10");

}

else if(a==15){

document.write("a is equal to 15");

}

else if(a==20){

document.write("a is equal to 20");

}

else{

document.write("a is not equal to 10, 15 or 20");

}

</script>

JavaScript Loops (For, While, Do-While, For...of, For...in)
In JavaScript, a loop is a programming tool that is used to repeat a set of instructions.
Loops are used to reduce repetitive tasks by repeatedly executing a block of code as
long as a specified condition is true.

Loops in JavaScript make the code more concise and efficient. The loops are used to
iterate the piece of code using for, while, do-while, or for-in loops.

Types of Loops in JavaScript

There are several types of loops present in JavaScript. Such as:

1. JavaScript for Loop

2. JavaScript while Loop

3. JavaScript do-while Loop

4. JavaScript for…of Loop

5. JavaScript for…in Loop

https://www.tpointtech.com/javascript-tutorial

JavaScript for Loop

JavaScript for loop is a control flow statement that allows code to be executed
repeatedly based on a condition. It contains initialization, condition, and
increment/decrement in one line.

Syntax

for(initialization; condition; increment/decrement){

//code

}

Example

for(let i= 1; i<=5; i++){

 console.log("TpointTech");

}

JavaScript while Loop

In JavaScript, the while loop creates a loop that is executed as long as a specific
condition is true. JavaScript while loop will continue to run, the condition is evaluated as
false.

In the while loop, we specify the condition before the loop, and usually, some variable is
incremented or changed in the while loop body to determine when the loop should stop.

Syntax

while(condition){

 //code block to be executed

}

Example

let a = 0;

while(a <= 3){

 console.log("Welcome to TpoinTech");

 a++;

}

JavaScript do-while Loop

Do while loop in JavaScript is a statement used to create a loop that executes a block of
code once, then checks if a condition is true, and then repeats the loop as long as the
condition remains true.

In JavaScript, do-while loops are used when the loop body needs to be executed at least
once. The loops end when the condition is false.

Syntax

do{

//code to execute

}while(condition)

Example

let p = 1;

let q = 1;

do{

 pp = p + q;

 console.log(p);

 q++;

}while(q<5)

JavaScript for…of loop

In JavaScript, the for…of loop iterates over an object's values rather than their keys. With
the help of this you can directly access the items as opposed to index-reference. Some
of the iterable objects are as follows:

o An array of elements.

o A string of characters.

o A map of key/value pairs.

Syntax

The syntax of for…of loop is as follows:

for(variable of iterable){

 //code to execute

}

Example

const items = ['BMW', 'Ferrari', 'Mustang'];

for(const item of items){

 console.log(item);

}

JavaScript for…in Loop

The for…in loop in JavaScript is used to iterate over the properties of an object. It only
iterates over keys of an object that have their enumerable property set to "true."

Syntax

for(key in object){

//code to execute

}

Example

const items = {Phone: 2, Laptop: 1, TV: 1};

for(const Appliance in items){

 console.log(Appliance);

}

How to Choose the Right Loop?

In JavaScript, loops are handy if you want to run the same code repeatedly, each time
with different values. You can choose the right loop based on:

o When the number of iterations is known, then use the for loop.

o When the condition depends on dynamic factors, use the while loop.

o When you ensure the block executes at least once, use the do-while loop.

o When you want to iterate over object properties, use the for…in loop.

o When you want to iterate through an iterable object, use the for…of loop.

JavaScript Functions
In JavaScript, a function is a reusable chunk of code created to carry out a certain
operation. After processing some optional input, it produces an optional output. Large
programs can be divided into smaller, more manageable components with the use of
functions.

A function is defined using the function keyword, followed by the function name,
parentheses for parameters, and curly braces, which contain the code to be executed.

Rules for naming functions:

It must be case-sensitive.

It must start with an alphabetical character (A-Z) or an underscore symbol.

It cannot contain spaces.

It cannot be used as reserve words.

How to declare a Function?

https://www.tpointtech.com/javascript-tutorial

To declare a function, we have to use the reserved keyword "function", followed by its
name and a set of arguments.

Syntax

function functionName([arg1, arg2, ...argN]){

 //code to be executed

}

In the above syntax, a function is a reserved keyword and "functionName" is a name
given to the function. JavaScript Functions can have 0 or more arguments.

Example

function greet(name) {

 console.log("Hello, " + name + "!");

 }

greet("Alice"); // Output: Hello, Alice!

Parameters: variable that is defined in the function's parentheses, used to receive input
values when the function is called.

Arguments: The actual values passed to the function when it is called.

Return values: Functions can optionally return a value using the return keyword, which
can be used to store the result of the function's execution.

Function Expressions

In JavaScript, the function can also be defined with the use of the expression. A function
expression can be stored in a variable:

const x = function (a, b) {return a * b};

Once, a function expression has been stored in a variable, the variable can be used as a
function:

Example

const x = function (a, b) {return a * b};

let z = x(4, 8);

console.log(z);

JavaScript Function Methods

Method Description

apply() It is used to call a function contains this
value and a single array of arguments.

bind() It is used to create a new function.

call() It is used to call a function contains this
value and an argument list.

toString() It returns the result in the form of a
string.

Types of JavaScript Functions

There are several types of JavaScript functions, such as:

Arrow functions

In JavaScript, arrow functions are a simple syntax for writing functions, which was
introduced in ES6, and they do not bind their own context.

Syntax:

const givenfunctionName = (parameters) => expression;

Example

const p = ["Water", "Air", "Light", "Earth"];

const pp2 = p.map(function (s) {

 return s.length;

});

console.log("Normal way ", p2);

const pp3 = p.map((s) => s.length);

console.log("Using arrow Function ", p3);

Callback Functions

In JavaScript, a callback function is passed into another function as a parameter and is
executed after the completion of that function.

https://www.tpointtech.com/javascript-function-apply-method
https://www.tpointtech.com/javascript-function-bind-method
https://www.tpointtech.com/javascript-function-call-method
https://www.tpointtech.com/javascript-function-tostring-method
https://www.tpointtech.com/arrow-function
https://www.tpointtech.com/javascript-callback

Example

function showData(name, amt) {

alert(' Hello ' + name + '\n Your entered amount is ' + amt);

}

function getData(callback) {

var name = prompt(" Welcome to the TpointTech.com \n What is your name? ");

var amt = prompt(" Enter some amount...");

callback(name, amt);

}

getData(showData);

Anonymous Functions

In JavaScript, anonymous functions are functions without a name. These types of
functions are often used as arguments to other functions.

Example

let x = function () {

 console.log('It is an anonymous function');

};

x();

Example

// Regular Function.

function hello()

{

 console.log("Regular function");

};

// Regular Function execution.

hello();

// IIFE creation and execution.

(function() { console.log("Immediately Invoked Function Expression"); })();

https://www.tpointtech.com/javascript-anonymous-functions

Nested Functions

In JavaScript, functions defined within other functions is known as nested functions.
Nested functions have access to the variables of their parent function.

Example

function outerFun(a) {

 function innerFun(b) {

 return a + b;

 }

 return innerFun;

}

const addTen = outerFun(11);

console.log(addTen(5));

Advantages of JavaScript Functions

There are several advantages of using functions in JavaScript. Such as:

Reusability

Functions allow you to write a block of code once and use it multiple times throughout
your applications, which saves time and effort.

Modularity

JavaScript functions help structure your code by grouping related logic into smaller
units, which makes it easier to understand, maintain and debug.

Improved Readability

By using descriptive function names and breaking down complex tasks, functions make
your code easier to read and understand.

Easier Maintenance

Changes or updates can be made to a function in one place without affecting other parts
of the program, which simplifies the maintenance process.

Debugging

When errors occur, they can be localized to specific functions, which makes it easier to
identify and fix problems.

JavaScript Objects
In JavaScript, an object is a variable that can hold multiple values. It is a location where
a collection of values is stored. Objects are among the most basic data types in
JavaScript. Every object contains properties and types, which are a single unit. Objects
are not primitive, unlike primitive data types.

For instance, take a football. A football has properties like weight, shape, color, and
design. In this case, the football is an object, and its weight and shape are its properties.

Similarly, in JavaScript, objects have properties that define their nature. An object can
hold various types, like Strings, Numbers, Booleans, Arrays, Functions, etc.

Syntax of Object in JavaScript

// Object literal syntax

const myObject = {

 key1: value1,

 key2: value2,

 // more key-value pairs...

};

1. Curly braces are used to demarcate the start and termination of an object literal.

2. Inside these braces, you define key-value pairs separated by commas.

3. Every key is a string (or symbol in ES6+).

4. A colon comes after each key, followed by its value.

5. They may be of any data type like strings, numbers, booleans, arrays, functions,
or other objects.

Creating a JavaScript Object

JavaScript provides several means of object construction, and flexibility as well as
versatility are both achievable. The different methods of object construction in
JavaScript are:

1. Using an Object Literal

2. Employing the JavaScript Keyword new

3. Constructing a constructor object

Using an Object Literal

Object literal is the easiest method of declaring an object in JavaScript. It is the process
of declaring key-value pairs in curly brackets {} to declare an object.

https://www.tpointtech.com/javascript-tutorial
https://www.tpointtech.com/javascript-string
https://www.tpointtech.com/javascript-number
https://www.tpointtech.com/javascript-boolean
https://www.tpointtech.com/javascript-array
https://www.tpointtech.com/javascript-function

Example

let person = {

 name: 'Harsh',

 age: 30,

 city: 'Ghaziabad'

};

Using new keyword

You can also create instances using constructor functions with the new keyword.
Constructor functions enable you to create multiple objects with the same methods and
properties.

Example

function Person(name, age, city) {

 this.name = name;

 this.age = age;

 this.city = city;

}

// Creating a new instance of Person

let person1 = new Person('Evan', 30, 'Paris');

let person2 = new Person('Anupam', 25, 'Delhi');

JavaScript Objects are Mutable

JavaScript objects are mutable, i.e., you can change their properties even after the object
has been initialized. This makes you capable of adding or removing properties, and
changing existing ones.

Example

let person = {

 name: 'Aman',

 age: 33,

 city: 'Delhi'

};

// Modifying property value

person.age = 31;

// Adding a new property

https://www.tpointtech.com/what-is-new-in-javascript

person.email = 'aman@example.com';

// Removing a property

delete person.city;

Characteristics of Objects in JavaScript

1. Objects are slightly tricky as they can contain any collection of reference data
types and simple data types.

2. A reference data type is used to label characters or numbers with a reference
value, the reference character or number referencing its position.

3. As an object is being passed from one function to another, this pointer points to
where the object is.

4. A class holds methods and attributes.

JavaScript Built-In Methods

Here are some commonly used JavaScript methods:

create(): This method is utilized to create JavaScript objects based on a prototype object,
as mentioned earlier.

entries(): This method accepts a JavaScript object as an argument and returns an array
that contains arrays of key-value pairs. For instance, let's revisit our "student" object.

keys(): The keys() method takes a JavaScript object as input and returns an array of its
property names.

values(): Similarly, the values() method takes a JavaScript object as input and returns
an array of its values.

is(): This method takes a second object as an argument and checks if both objects are
equal, returning a Boolean value. If the objects are equal, it returns "true"; otherwise, it
returns "false."

Object.create()

Object.create() method creates a new object and links it to an existing object.

Code

const people = {

printIntro: function () {

console.log(`My full name is ${this.Fname}. Am I Alive? ${this.isalive}`);

}

};

const name = Object.create(people);

https://www.tpointtech.com/javascript-object-create-method

name.Fname = "Robert"; // "Fname" is a property set on "name", but not on "people"

name.isalive = true;

name.printIntro();

Object.entries()

The Object.entries() returns the object's array consisting of enumerable properties [key,
value] pair.

Syntax:

Object.entries(obj)

Code

const student = { 1: 'Steve', 100: 'Sanju', 45: 'Chris' };

console.log(Object.entries(student));

Object.keys()

The Object.keys() method gives you back the enumerable properties of an array or an
array-like object, even if the keys are in a random order.

Code

let employee_detail = {

employee_name: 'Smith',

employee_salary: 144,

employee_age : 23

} ;

console.log(Object.keys(employee_detail).length);

Object.values()

The `Object.values()` function gives you an array of values of an object property. It gives
you the values of the object and returns them in an array form.

Code

// Returning property values of an array

var check = ['x', 'y', 'z'];

console.log(Object.values(check));

https://www.tpointtech.com/javascript-object-entries-method
https://www.tpointtech.com/javascript-object-keys-method
https://www.tpointtech.com/javascript-object-values-method

Object.is()

The JavaScript Object.is() method is a useful function that allows you to see whether two
values are exactly equal. It does so without type coercion, i.e., it looks at values as they
are. And, it even accounts for some special cases, such as having differentiating between
positive and negative zero.

Code

console.log(Object.is(5, 5)); // true

console.log(Object.is('Java', 'Java')); // true

console.log(Object.is(true, false)); // false

console.log(Object.is(0, -0)); // false

console.log(Object.is(NaN, NaN)); // true

JavaScript Arrays
In JavaScript, an array is a collection of multiple values stored at different memory
locations but sharing the same name. You can access the values in an array by using the
indexes within square brackets, starting from 0 up to the length of the array minus
1([0]…[n-1]).

Syntax

The syntax of arrays in JavaScript is as follows:

const array_name = [item1, item2,…..];

Example

const age = [20, 22, 21, 10, 12];

console.log(age);

How to Create Arrays in JavaScript?

There are 3 ways to create an array in JavaScript. Such as:

o Array Literals

o Using new keyword

o Array Constructor

Array Literal

An array literal is a list of zero or more expressions, each of which represents an array
element, enclosed in square brackets([]).

https://www.tpointtech.com/javascript-object-is-method
https://www.tpointtech.com/javascript-tutorial

Syntax

The array can be created with an array literal by using the syntax below.

var arrayname=[value1, value2.....valuen];

Example

let country = ["India", "Australia", "England"];

for (let i = 0; i<country.length; i++){

console.log(country[i]);

}

Using a new keyword

With the use of a new keyword in JavaScript, you can easily create an array.

Syntax

var array_name = new Array ();

Example

let num;

let country = new Array ();

country[0] = "Japan";

country[1] = "Spain";

country[2] = "Germany";

for (num = 0; num<country.length; num++)

{

console.log(country[num]);

}

Array Constructor

You can create an array instance by passing arguments into a constructor.

Example

let employee = new Array("Rohit", "Vivek", "Jhon");

for (let i=0;i<employee.length;i++){

console.log(employee[i]);

}

https://www.tpointtech.com/what-is-new-in-javascript

Basic Operations on JavaScript Arrays

In JavaScript, arrays offer several operations for managing and manipulating data
efficiently.

Accessing Elements of an Array

In JavaScript, when you want to access an element at a specific index in an array, you
can use brackets[] with the index number.

Example

let cars = ["BMW", "Buggati", "Skyline"];

console.log(cars[1]);

Accessing the First Element of an Array

By using index 0 you can access the first element of an array.

Example

let cars = ["BMW", "Buggati", "Skyline"];

console.log(cars[0]);

Accessing the Last Element of an Array

By using the index length - 1, you can access the last element of an array.

Example

let cars = ["BMW", "Buggati", "Skyline"];

let last = cars[cars.length-1];

console.log(last);

Modifying the Array Elements

By assigning a new value to a specific index, you can modify elements in an array.

Example

let cars = ["BMW", "Buggati", "Skyline"];

cars[1] = "Ferrari";

console.log(cars);

Adding Elements to the Array

By using the push() Method, you can add elements to the end of an array.

Example

let cars = ["BMW", "Buggati", "Skyline"];

cars.push("GTR");

console.log(cars);

Removing Elements from an Array

By using methods like pop(), shift(), or splice(), you can remove elements from an array.

Example

let cars = ["BMW", "Buggati", "Skyline"];

cars.pop(); // removes the last element

console.log(cars);

JavaScript Array Methods

Methods Description

concat() It returns a new array object that contains two or more
merged arrays.

copywithin() It copies the part of the given array with its own elements
and returns the modified array.

entries() It creates an iterator object and a loop that iterates over each
key/value pair.

every() It determines whether all the elements of an array are
satisfying the provided function conditions.

flat() It creates a new array carrying sub-array elements
concatenated recursively till the specified depth.

flatMap() It maps all array elements via mapping function, then flattens
the result into a new array.

fill() It fills elements into an array with static values.

from() It creates a new array carrying the exact copy of another
array element.

filter() It returns the new array containing the elements that pass
the provided function conditions.

find() It returns the value of the first element in the given array that
satisfies the specified condition.

https://www.tpointtech.com/javascript-array-concat-method
https://www.tpointtech.com/javascript-array-copywithin-method
https://www.tpointtech.com/javascript-array-entries-method
https://www.tpointtech.com/javascript-array-every-method
https://www.tpointtech.com/javascript-array-flat-method
https://www.tpointtech.com/javascript-array-flatmap-method
https://www.tpointtech.com/javascript-array-fill-method
https://www.tpointtech.com/javascript-array-from-method
https://www.tpointtech.com/javascript-array-filter-method
https://www.tpointtech.com/javascript-array-find-method

findIndex() It returns the index value of the first element in the given
array that satisfies the specified condition.

forEach() It invokes the provided function once for each element of an
array.

includes() It checks whether the given array contains the specified
element.

indexOf() It searches the specified element in the given array and
returns the index of the first match.

isArray() It tests if the passed value ia an array.

join() It joins the elements of an array as a string.

keys() It creates an iterator object that contains only the keys of the
array, then loops through these keys.

lastIndexOf() It searches the specified element in the given array and
returns the index of the last match.

map() It calls the specified function for every array element and
returns the new array

of() It creates a new array from a variable number of arguments,
holding any type of argument.

pop() It removes and returns the last element of an array.

push() It adds one or more elements to the end of an array.

reverse() It reverses the elements of given array.

reduce(function,
initial)

It executes a provided function for each value from left to
right and reduces the array to a single value.

reduceRight() It executes a provided function for each value from right to
left and reduces the array to a single value.

some() It determines if any element of the array passes the test of
the implemented function.

shift() It removes and returns the first element of an array.

slice() It returns a new array containing the copy of the part of the
given array.

sort() It returns the element of the given array in a sorted order.

splice() It add/remove elements to/from the given array.

toLocaleString() It returns a string containing all the elements of a specified
array.

https://www.tpointtech.com/javascript-array-findindex-method
https://www.tpointtech.com/javascript-array-foreach-method
https://www.tpointtech.com/javascript-array-includes-method
https://www.tpointtech.com/javascript-array-indexof-method
https://www.tpointtech.com/javascript-array-isarray-method
https://www.tpointtech.com/javascript-array-join-method
https://www.tpointtech.com/javascript-array-keys-method
https://www.tpointtech.com/javascript-array-lastindexof-method
https://www.tpointtech.com/javascript-array-map-method
https://www.tpointtech.com/javascript-array-of-method
https://www.tpointtech.com/javascript-array-pop-method
https://www.tpointtech.com/javascript-array-push-method
https://www.tpointtech.com/javascript-array-reverse-method
https://www.tpointtech.com/javascript-array-reduce-method
https://www.tpointtech.com/javascript-array-reduce-method
https://www.tpointtech.com/javascript-array-reduceright-method
https://www.tpointtech.com/javascript-array-some-method
https://www.tpointtech.com/javascript-array-shift-method
https://www.tpointtech.com/javascript-array-slice-method
https://www.tpointtech.com/javascript-array-sort-method
https://www.tpointtech.com/javascript-array-splice-method
https://www.tpointtech.com/javascript-array-tolocalestring-method

toString() It converts the elements of a specified array into string form,
without affecting the original array.

unshift() It adds one or more elements in the beginning of the given
array.

values() It creates a new iterator object carrying values for each
index in the array.

JavaScript DOM
JavaScript Document Object Model, also known as JavaScript DOM, is an interface that
is used for web documents, specifically for HTML or XML. By using JavaScript DOM, we
can represent the structure of a document as a tree-like structure of nodes, which
allows us to access, modify and manipulate the content, structure, as well as style of a
web page.

A web page is a document that can be either displayed in the browser window or as the
HTML source. In both cases, it is the same document, but the Document Object
Model(DOM) representation allows it to be manipulated.

Example

<!DOCTYPE html>

<html>

<head>

<title>JavaScript DOM</title>

</head>

<body>

<h1>Hello, World!</h1>

</body>

</html>

https://www.tpointtech.com/javascript-array-tostring-method
https://www.tpointtech.com/javascript-array-unshift-method
https://www.tpointtech.com/javascript-array-values-method
https://www.tpointtech.com/html-tutorial
https://www.tpointtech.com/what-is-xml

Properties of Document Object Model

Methods of JavaScript DOM

In JavaScript, with the use of methods, we can access and modify the contents of the
document. There are some important methods of the Document Object Model as follows:

Method Description

document.write("string") It writes the given string on the document.

document.writeln("string") It writes the given string on the document with a
newline character at the end.

getElementById() It returns the element having the given id value.

getElementByName() It returns all the elements having the given name
value.

getElementByClassName() It returns all the elements having the given class
name.

getElementByTagName() It returns all the elements having the given tag
name.

https://www.tpointtech.com/javascript-tutorial

querySelector() It returns the first elements matching a CSS
selector.

querySelectorAll() It returns all elements matching a CSS selector.

JavaScript getElementById()

In JavaScript, the getElementById() is a built-in function that allows you to select an
HTML element using its unique ID attribute.

Syntax

The syntax of getElementById is as follows:

document.getElementById(elementID);

Example

<html>

 <head>

 <title>getElementById example</title>

 </head>

 <body>

 <p id="demo">JavaScript DOM</p>

 <button onclick="changeColor('purple');">purple</button>

 <script>

 function changeColor(newColor) {

 const elem = document.getElementById("demo");

 elem.style.color = newColor;

 }

 </script>

 </body>

</html>

JavaScript getElementsByName()

In JavaScript, the getElementsByName() method returns a collection of elements with a
specified name.

Syntax

The syntax of getElementsByName is as follows:

document.getElementsByName(elementName);

https://www.tpointtech.com/document-getElementById()-method
https://www.tpointtech.com/document-getElementsByName()-method

Example

<!DOCTYPE html>

<html lang="en">

<head>

 <title>JavaScript DOM</title>

</head>

<body>

 <h2>The getElementByName method</h2>

 Phone:

 <input name="devices" type ="checkbox" value="Phone">

 Laptop:

 <input name="devices" type ="checkbox" value="Laptop">

 Sofa:

 <input name="furnitures" type ="checkbox" value="Sofa">

 <p>Check the checkboxes that have name = "devices"</p>

<script>

 const collection = document.getElementsByName("devices");

 for(let i =0; i <collection.length; i++){

 if(collection[i].type =="checkbox"){

 collection[i].checked = true;

 }

 }

</script>

</body>

</html>

JavaScript getElementsByClassName()

In JavaScript, the getElementsByClassName() returns a collection of elements with a
specified class.

Syntax

The syntax of getElementsByClassName is as follows:

document.getElementByClassName(classname);

https://www.tpointtech.com/javascript-getelementsbyclassname

Example

<!DOCTYPE html>

<html>

<head>

 <title>getElementsByClassName Example</title>

</head>

<body>

 <p class="highlight">This is paragraph 1.</p>

 <p class="highlight">This is paragraph 2.</p>

 <p>This is a normal paragraph.</p>

 <button onclick="highlightParagraphs()">Highlight Paragraphs</button>

 <script>

 function highlightParagraphs() {

 // Get all elements with the class 'highlight'

 var elements = document.getElementsByClassName("highlight");

 // Loop through the elements and change their background color

 for (var i = 0; i < elements.length; i++) {

 elements[i].style.backgroundColor = "yellow";

 }

 }

 </script>

</body>

</html>

JavaScript getElementsByTagName()

In JavaScript, the getElementsByTagName() is a built-in method that returns all the
elements having the given tag name.

Syntax

The syntax of getElementsByTagName is as follows:

getElementsByTagName(tagName)

https://www.tpointtech.com/document-getElementsByTagName()-method

Example

<!DOCTYPE html>

<html>

<head>

<title>My Page</title>

</head>

<body>

<script type="text/javascript">

function countpara(){

var totalpara=document.getElementsByTagName("p");

alert("total p tags are: "+totalpara.length);

}

</script>

<p>This is a paragraph</p>

<p>Here we are going to count a total number of paragraphs by the getElementByTa
gName() method.</p>

<p>Let's see the simple example</p>

<button onclick="countpara()">count paragraph</button>

</body>

</html>

JavaScript querySelector()

In JavaScript, the querySelector() method returns the first element that matches a CSS
selector.

Syntax

The syntax of querySelector is as follows:

querySelector(selectors)

https://www.tpointtech.com/javascript-queryselector

Example

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>querySelector Example</title>

</head>

<body>

 <p id="myParagraph">Click the button to change this text.</p>

 <button id="myButton">Click Me</button>

 <script>

 const button = document.querySelector('#myButton');

 button.addEventListener('click', () => {

 const paragraph = document.querySelector('#myParagraph');

 paragraph.textContent = 'The text has been changed!';

 });

 </script>

</body>

</html>

JavaScript querySelectorAll()

In JavaScript, querySelectorAll() returns all the child elements that match a CSS
selector.

Syntax

The syntax of querySelectorAll() is as follows:

element.querySelectorAll(CSS selectors)

Example

<!DOCTYPE html>

<html>

<head>

 <title>querySelectorAll Example</title>

 <style>

 .highlight {

 font-weight: bold;

 color: blue;

 }

 </style>

</head>

<body>

 <h2 class="highlight">Heading One</h2>

 <h2 class="highlight">Heading Two</h2>

 <h2>Heading Three</h2>

 <script>

 const elements = document.querySelectorAll('.highlight');

 elements.forEach((element) => {

 element.style.color = 'red';

 });

 </script>

</body>

</html>

Features of JavaScript DOM

There are some features of JavaScript DOM such as:

Dynamic Manipulation

JavaScript can dynamically add, remove, and modify HTML elements, attributes, and
styles, which creates interactive and dynamic web pages.

Event Handling

In JavaScript, the DOM helps to respond to user actions and other events that occur on
the page, such as button clicks or form submissions.

Tree structure

JavaScript DOM represents HTML documents as a tree structure where each element is
a node, which allows for efficient traversal and manipulation of the document's
elements.

DOM Traversal

JavaScript can navigate the DOM tree with the use of various methods to find specific
elements and access their properties and methods.

Exception Handling in JavaScript
An exception signifies the presence of an abnormal condition which requires special
operable techniques. In programming terms, an exception is the anomalous code that
breaks the normal flow of the code. Such exceptions require specialized programming
constructs for its execution.

What is Exception Handling?

In programming, exception handling is a process or method used for handling the
abnormal statements in the code and executing them. It also enables to handle the flow
control of the code/program. For handling the code, various handlers are used that
process the exception and execute the code. For example, the Division of a non-zero
value with zero will result into infinity always, and it is an exception. Thus, with the help
of exception handling, it can be executed and handled.

In exception handling:

A throw statement is used to raise an exception. It means when an abnormal condition
occurs, an exception is thrown using throw.

The thrown exception is handled by wrapping the code into the try…catch block. If an
error is present, the catch block will execute, else only the try block statements will get
executed.

Thus, in a programming language, there can be different types of errors which may
disturb the proper execution of the program.

Types of Errors

While coding, there can be three types of errors in the code:

1. Syntax Error: When a user makes a mistake in the pre-defined syntax of a
programming language, a syntax error may appear.

2. Runtime Error: When an error occurs during the execution of the program, such
an error is known as Runtime error. The codes which create runtime errors are
known as Exceptions. Thus, exception handlers are used for handling runtime
errors.

3. Logical Error: An error which occurs when there is any logical mistake in the
program that may not produce the desired output, and may terminate abnormally.
Such an error is known as Logical error.

Error Object

When a runtime error occurs, it creates and throws an Error object. Such an object can
be used as a base for the user-defined exceptions too. An error object has two
properties:

1. name: This is an object property that sets or returns an error name.

2. message: This property returns an error message in the string form.

Although Error is a generic constructor, there are following standard built-in error types
or error constructors beside it:

1. EvalError: It creates an instance for the error that occurred in the eval(), which is
a global function used for evaluating the js string code.

2. InternalError: It creates an instance when the js engine throws an internal error.

3. RangeError: It creates an instance for the error that occurs when a numeric
variable or parameter is out of its valid range.

4. ReferenceError: It creates an instance for the error that occurs when an invalid
reference is de-referenced.

5. SyntaxError: An instance is created for the syntax error that may occur while
parsing the eval().

6. TypeError: When a variable is not a valid type, an instance is created for such an
error.

7. URIError: An instance is created for the error that occurs when invalid
parameters are passed in encodeURI() or decodeURI().

Exception Handling Statements

There are following statements that handle if any exception occurs:

o throw statements

o try…catch statements

o try…catch…finally statements.

JavaScript try…catch

A try…catch is a commonly used statement in various programming languages. Basically,
it is used to handle the error-prone part of the code. It initially tests the code for all
possible errors it may contain, then it implements actions to tackle those errors (if
occur). A good programming approach is to keep the complex code within the try…catch
statements.

Let's discuss each block of statement individually:

try{} statement: Here, the code which needs possible error testing is kept within the try
block. In case any error occur, it passes to the catch{} block for taking suitable actions
and handle the error. Otherwise, it executes the code written within.

catch{} statement: This block handles the error of the code by executing the set of
statements written within the block. This block contains either the user-defined
exception handler or the built-in handler. This block executes only when any error-prone
code needs to be handled in the try block. Otherwise, the catch block is skipped.

Note: catch {} statement executes only after the execution of the try {} statement. Also,
one try block can contain one or more catch blocks.

Syntax:

try{

expression; } //code to be written.

catch(error){

expression; } // code for handling the error.

try…catch example

<html>

<head> Exception Handling</br></head>

<body>

<script>

try{

var a= ["34","32","5","31","24","44","67"]; //a is an array

document.write(a); // displays elements of a

document.write(b); //b is undefined but still trying to fetch its value. Thus catch bloc
k will be invoked

}catch(e){

alert("There is error which shows "+e.message); //Handling error

}

</script>

</body>

</html>

Throw Statement

Throw statements are used for throwing user-defined errors. User can define and throw
their own custom errors. When throw statement is executed, the statements present
after it will not execute. The control will directly pass to the catch block.

Syntax:

throw exception;

try…catch…throw syntax

try{

throw exception; // user can define their own exception

}

catch(error){

expression; } // code for handling exception.

The exception can be a string, number, object, or boolean value.

throw example with try…catch

<html>

<head>Exception Handling</head>

<body>

<script>

try {

 throw new Error('This is the throw keyword'); //user-defined throw statement.

}

catch (e) {

 document.write(e.message); // This will generate an error message

}

</script>

</body>

</html>

try…catch…finally statements

Finally is an optional block of statements which is executed after the execution of try
and catch statements. Finally block does not hold for the exception to be thrown. Any
exception is thrown or not, finally block code, if present, will definitely execute. It does
not care for the output too.

Syntax:

try{

expression;

}

catch(error){

expression;

}

finally{

expression; } //Executable code

try…catch…finally example

<html>

<head>Exception Handling</head>

<body>

<script>

try{

var a=2;

if(a==2)

document.write("ok");

}

catch(Error){

document.write("Error found"+e.message);

}

finally{

document.write("Value of a is 2 ");

}

</script>

</body> </html>

JavaScript Events
The change in the state of an object is known as an Event. In html, there are various
events which represents that some activity is performed by the user or by the browser.
When javascript code is included in HTML, js react over these events and allow the
execution. This process of reacting over the events is called Event Handling. Thus, js
handles the HTML events via Event Handlers.

For example, when a user clicks over the browser, add js code, which will execute the
task to be performed on the event.

Event Handler Uses:

It can be used directly within HTML elements by adding special attributes to those
elements. They can also be used within the <script> tags or in external JavaScript files.

Some of the HTML events and their event handlers are:

Mouse events:

Event Performed Event Handler Description

click onclick When mouse click on an
element

mouseover onmouseover When the cursor of the
mouse comes over the
element

mouseout onmouseout When the cursor of the
mouse leaves an
element

mousedown onmousedown When the mouse button
is pressed over the
element

mouseup onmouseup When the mouse button
is released over the
element

mousemove onmousemove When the mouse
movement takes place.

https://www.tpointtech.com/javascript-tutorial
https://www.tpointtech.com/html-tutorial

Keyboard events:

Event Performed Event Handler Description

Keydown & Keyup onkeydown & onkeyup When the user press and
then release the key

Form events:

Event Performed Event Handler Description

focus onfocus When the user focuses
on an element

submit onsubmit When the user submits
the form

blur onblur When the focus is away
from a form element

change onchange When the user modifies
or changes the value of a
form element

Window/Document events

Event Performed Event Handler Description

load onload When the browser
finishes the loading of
the page

unload onunload When the visitor leaves
the current webpage, the
browser unloads it

resize onresize When the visitor resizes
the window of the
browser

reset onreset When the window size is
resized

scroll onscroll When the visitor scrolls a
scrollable area

Click Event

<html>

<head> Javascript Events </head>

<body>

<script language="Javascript" type="text/Javascript">

 <!--

 function clickevent()

 {

 document.write("This is Learn Java Script By Sardar Azeem");

 }

 //-->

</script>

<form>

<input type="button" onclick="clickevent()" value="Who's this?"/>

</form>

</body>

</html>

MouseOver Event

<html>

<head>

<h1> Javascript Events </h1>

</head>

<body>

<script language="Javascript" type="text/Javascript">

 <!--

 function mouseoverevent()

 {

 alert("This is Learn Java Script By Sardar Azeem");

 }

 //-->

</script>

<p onmouseover="mouseoverevent()"> Keep cursor over me</p>

</body>

</html>

Focus Event

<html>

<head> Javascript Events</head>

<body>

<h2> Enter something here</h2>

<input type="text" id="input1" onfocus="focusevent()"/>

<script>

<!--

 function focusevent()

 {

 document.getElementById("input1").style.background=" aqua";

 }

//-->

</script>

</body>

</html>

Keydown Event

<html>

<head> Javascript Events</head>

<body>

<h2> Enter something here</h2>

<input type="text" id="input1" onkeydown="keydownevent()"/>

<script>

<!--

 function keydownevent()

 {

 document.getElementById("input1");

 alert("Pressed a key"); } //--> </script> </body> </html>

Load event

<html>

<head>Javascript Events</head>

</br>

<body onload="window.alert('Page successfully loaded');">

<script>

<!--

document.write("The page is loaded successfully");

//-->

</script>

</body>

</html>

Browser Object Model
Browser Object Model (BOM)

The Browser Object Model (BOM) is
used to interact with the browser.

The default object of browser is
window means you can call all the
functions of window by specifying
window or directly. For example:

window.alert("hello Learn Java Script By Sardar Azeem");

is same as:

alert("hello Learn Java Script By Sardar Azeem");

You can use a lot of properties (other objects) defined underneath the window object like
document, history, screen, navigator, location, innerHeight, innerWidth,

Note: The document object represents an html document. It forms DOM (Document
Object Model).

https://www.tpointtech.com/browser-object-model

