
By Sardar Azeem

Website
Development
Essentials

 PICT Academy Near Rivaj Shadi Hall Yousaf Jamal Plaza Mansehra Road Supply Abbottabad

Contact Us : 0313-5879331

 INTERNET AND WORLD WIDE WEB INTERNET

The Internet is a global network system that has dramatically transformed trade and

communication. The network of networks, the Internet connects computer systems

across the globe, enabling them (and thus, their users) to interact efficiently. Although

its popularity rose gradually, about half of the world's population is now an Internet

user, utilizing the Internet in everyday life.

The Internet pervades our daily lives, from reserving plane tickets to purchasing a pair

of socks. And without it, the rise of some of the world's largest corporations, such as

Facebook, Microsoft, and Amazon, would have been inconceivable.

However, as the saying goes, "With every blessing comes a curse". And the Internet is

no different. It has simplified our lives, yet whether intentionally or not, we have all

become its slaves.

Advantages and Disadvantages of the Internet

Advantages Disadvantages

Global connections through virtual

communications
Loss of personal information

E-commerce Spread of fake news

Online Education Internet addiction and time wastage

Abundance of information Physical and mental health issues

Advantages of Internet

1. Virtual Interview Calls

Consider the following scenario: you're sitting in your home in a rural section of Kerala

and you're scheduled for a face-to-face interview in Ontario, Canada. Meanwhile, you

contact the support staff to request an alternate form of communication for the

interview calls, as you do not have a passport to travel abroad. The support staff sends

you an email informing you that they provide the facility of video conferencing. That's

all, you're now free to proceed with the interview.

Though Skype, Google Meet, Cisco WebEx, and others deserve recognition, it all began

with the first spark for the development of ingenious time-saving tools since the

emergence of internet technology. But that doesn't mean you do not apply for a

passport!

2. A Global Connector

The growth of social media platforms like Instagram, Facebook, WhatsApp, Twitter, and

other communication forums has paved the way for creating a global social network

where anyone may reach out to resolve their concerns and remain connected to family

groups and friends. Spending time with people they love is no longer dependent on

their physical proximity.

3. Online Services and E-Commerce

With the help of the internet, we can browse the whole inventory of any online store

from the comfort of our homes and reap the benefits of online shopping. Additionally,

small businesses and individuals use the Internet to expand their reach into the

worldwide market. Artists, craftspeople, and others living in remote places can now

sell their pieces of art in the global market via the Internet. Not only has the internet

proved to be a boon for online shoppers, but you can also access online services.

Online booking is available for most essential services, because of which activities like

booking a cab, ordering meals, or contacting a mechanic have gotten significantly

easier.

4. Online Education

Have you ever considered studying at prestigious universities such as MIT, Harvard,

Stanford, Cambridge, IIT, NIT, MIT (Madras Institute of Technology), IISc, or IIM but were

unable to pursue the opportunity? Our best buddy "The Internet" has enabled these

prestigious universities to provide lecture lessons to other college students via

YouTube (e.g. MIT courseware, CS50, etc.), NPTEL.

In today's competitive world, relying solely on traditional education may leave you

lacking the critical abilities to compete with your peers. The Internet has enabled us to

acquire new skills through online courses from industry professionals, as well as

gather a wealth of knowledge about various technologies, current events, sports, art,

and culture. The greatest way to illustrate the internet's benefit is to imagine

that you're reading about the internet via the internet.

5. A Blessing In Disguise: Internet in COVID-19

COVID-19 shattered the lives and well-being of most people and reinforced

geographical barriers. The Internet was a blessing in disguise, enabling individuals

seeking help to find the right resources. Additionally, by posting videos on YouTube (on

topics ranging from cooking to handicrafts to online business to art creation),

Instagram, and LinkedIn, people were able to discover their true potential and use it to

make a difference in their communities.

6. Abundant Information

The Internet is full of essential information, be it on financial matters, government

legislation and service, market information and economic affairs, technological

information, educational and academic issues, and new ideas. It includes a wide range

of topics, from scientific publications to topics geared toward children.

Disadvantages of Internet

While we do understand the benefits of having an internet connection, there are certain

downsides to using the internet frequently. Let's take a look at some of the negative

consequences of excessive internet consumption:

1. Loss of Personal Information

When using social networking websites or online banking services, consumers enter

their personal information including email addresses, bank account numbers, credit

card details, and phone numbers. This information can be easily accessed by a

software expert or a hacker, resulting in privacy exposure or even identity theft.

Viruses are designed by hackers to infiltrate computer systems and wreak havoc,

further leading to privacy concerns. Online frauds have become increasingly common

in recent years, and it's imperative to keep a check on what we share on the world

wide web.

2. Internet Addiction

No doubt the internet has made people its slave, reducing offline social abilities. This

has led to an adverse impact on people's mental health. Elders and children alike have

been impacted. Mobile phone apps like YouTube allow children as young as two to see

online videos. They are spending more time in front of a computer screen, which has

stifled their cerebral development.

3. Time Wastage

On the Internet, it's easy to lose track of time. Surfing might take a lot longer than you

think, and you may not even know it. This also leads to an increase in screen time,

which has a negative effect on our memory, especially in children. We aren't using our

brains as much as we used to because of the rise of the Internet. When we were

younger, we used to remember phone numbers, addresses, and PINs in our heads, as

well as perform simple math without the aid of our phones. However, we increasingly

rely on the Internet for everything.

4. Obesity and Other Health Issues

Excessive consumption of the internet promotes a sedentary lifestyle, which in turn

can lead to weight gain. Being constantly on the Internet, playing games, using

streaming services, or social networking can lead to an unhealthy physique - like poor

eyesight, excessive weight gain, etc. In certain cases, the constant use of the internet

and/or its misuse also increased mental health issues in teenagers and young adults.

5. Fake News

The spread of fake news is one of the biggest disadvantages of the internet. Since

there are limited to no controls in place on a communication forum, website, or social

media platform, fake news often goes viral - risking the well-being of entire

communities.

Internet Ethics or Cyber Ethics

Internet Ethics or Cyber Ethics can be described as acceptable behavior standards to

be followed by digital users while using the internet. They help digital citizens stay safe

online by setting up a set of moral principles that govern the usage of Computers and

Internet.

Key Areas of Internet Ethics:

1. Privacy:

o Data Protection: Ensuring that personal data is collected, stored, and

used responsibly.

o Surveillance: Ethical considerations around government and corporate

monitoring of online activities.

o Consent: Obtaining informed consent before collecting or sharing

personal information.

2. Security:

o Cybersecurity: Protecting systems, networks, and data from unauthorized

access or attacks.

o Ethical Hacking: Engaging in hacking activities with the intent to improve

security rather than harm.

o Responsibility: Organizations must take reasonable steps to protect user

data.

3. Intellectual Property:

o Copyright: Respecting the rights of creators by not engaging in

unauthorized copying or distribution of digital content.

o Piracy: The ethical and legal implications of sharing or downloading

copyrighted material without permission.

o Open Source: The ethics of sharing and contributing to software and

content openly.

4. Digital Divide:

o Access: Ensuring equitable access to the internet and digital technologies

for all.

o Education: Promoting digital literacy to enable everyone to participate

fully in the digital world.

o Economic Impact: Considering the ethical implications of the gap between

those who have access to technology and those who do not.

5. Freedom of Expression:

o Censorship: Balancing the need to protect society from harmful content

with the right to free speech.

o Hate Speech: Addressing the ethical concerns around harmful, offensive,

or dangerous speech online.

o Content Moderation: The role of platforms in regulating user-generated

content.

6. Responsibility and Accountability:

o Anonymity: The ethical implications of anonymous online behavior.

o Cyberbullying: Addressing the moral and ethical issues of harassment

and bullying in online spaces.

o Digital Footprint: Awareness of the long-term impact of online actions on

one’s reputation and others.

7. Ethical Use of AI and Automation:

o Algorithmic Bias: The fairness and transparency of algorithms used in

various online platforms.

o Automation: The ethical use of automated systems, including bots, in

online environments.

o AI Ethics: Ensuring that artificial intelligence is used in ways that are fair,

just, and do not harm society.

Importance of Internet Ethics:

• Trust: Fostering trust in digital interactions is crucial for the growth and

sustainability of online communities.

• Security: Ethical behavior helps in maintaining the security and integrity of

digital systems.

• Social Good: Ethical use of the internet promotes positive societal outcomes and

prevents harm.

• Legal Compliance: Adhering to ethical principles often aligns with legal

requirements, reducing the risk of legal repercussions.

World Wide Web (www)

The World Wide Web (WWW) is a vast information space where documents and other

web resources are identified by Uniform Resource Locators (URLs) and can be

accessed over the Internet. It is one of the most significant innovations of the 20th

century, transforming how people access and share information globally.

Key Concepts and Components of the World Wide Web:

1. Web Pages:

o HTML: The World Wide Web is built primarily using Hypertext Markup

Language (HTML), which structures content on web pages.

o CSS: Cascading Style Sheets (CSS) are used to style and design web

pages, defining their appearance.

o JavaScript: A scripting language that enables interactive features on web

pages, such as forms, animations, and dynamic content.

2. URLs (Uniform Resource Locators):

o Addressing: URLs are the addresses used to locate web resources on the

internet. They typically consist of a protocol (e.g., HTTP or HTTPS), a

domain name (e.g., www.example.com), and a path to a specific resource

or page.

o Domains: The domain name is a human-readable address that

corresponds to a numeric IP address used by computers to communicate.

3. Web Browsers:

o Function: Web browsers are software applications used to access and

display web pages. Examples include Google Chrome, Mozilla Firefox,

Safari, and Microsoft Edge.

o Rendering: Browsers interpret HTML, CSS, and JavaScript to render web

pages visually.

4. Hyperlinks:

o Navigation: Hyperlinks, or links, are a core feature of the World Wide Web.

They allow users to navigate between web pages, websites, and different

sections within a document.

o Interconnectedness: Hyperlinks create a web-like structure of

interconnected documents, allowing for seamless exploration of related

content.

5. HTTP/HTTPS:

o Protocols: Hypertext Transfer Protocol (HTTP) and its secure version,

HTTPS, are the protocols used for transmitting data between a web

server and a browser. HTTPS encrypts data to enhance security.

o Requests/Responses: The communication between browsers and servers

involves sending requests (e.g., for a web page) and receiving responses

(e.g., the HTML of that page).

6. Web Servers:

o Hosting: Web servers are computers that store web pages and other

resources and serve them to users upon request.

o Software: Common web server software includes Apache, Nginx, and

Microsoft IIS.

7. Search Engines:

o Indexing: Search engines like Google, Bing, and Yahoo index web pages

and provide a means for users to search for information on the web.

o Algorithms: These engines use complex algorithms to rank pages based

on relevance, quality, and other factors.

8. Web Standards:

o W3C: The World Wide Web Consortium (W3C) is the main international

standards organization for the web. It develops protocols and guidelines

to ensure the long-term growth and compatibility of the web.

o Accessibility: Standards also include guidelines to make the web

accessible to people with disabilities.

9. Evolution of the Web:

o Web 1.0: The early web, characterized by static pages and limited

interactivity.

o Web 2.0: Marked by increased user interaction, social media, and dynamic

content.

o Web 3.0: The emerging concept of a more intelligent, decentralized web,

often associated with the use of AI and blockchain technologies.

10. Impact of the World Wide Web:

o Global Communication: The WWW has revolutionized communication,

enabling instant sharing of information across the globe.

o E-Commerce: It has transformed business, giving rise to online shopping,

digital marketing, and the global economy.

o Education: The web has democratized access to information, making

education and knowledge more accessible than ever.

o Social Interaction: Social media and other online platforms have changed

how people connect, share, and build communities.

Services of Internet

The internet offers a wide range of services that have become integral to everyday life,

transforming how people communicate, work, learn, and entertain themselves. Here’s

an overview of the most significant internet services:

1. Email (Electronic Mail):

• Communication: Email allows users to send and receive messages, documents,

and other files instantly across the globe.

• Services: Popular email providers include Gmail, Outlook, and Yahoo Mail.

2. World Wide Web (WWW):

• Information Access: The web provides access to vast amounts of information

through websites, blogs, and online articles.

• E-commerce: Online shopping platforms like Amazon and eBay enable users to

purchase goods and services over the internet.

• Education: E-learning platforms and online courses, such as Coursera and Khan

Academy, offer educational resources.

3. Search Engines:

• Information Retrieval: Search engines like Google, Bing, and DuckDuckGo allow

users to search for information, websites, and content on the web.

• SEO (Search Engine Optimization): Techniques used by website owners to

increase visibility on search engines.

4. Social Networking:

• Social Media: Platforms like Facebook, Twitter, Instagram, and LinkedIn enable

users to connect, share, and interact with friends, family, and professional

networks.

• Content Sharing: Users can share photos, videos, and updates, engage in

discussions, and follow public figures or interests.

5. Instant Messaging (IM):

• Real-Time Communication: Services like WhatsApp, Telegram, and Messenger

allow users to send text messages, voice notes, and images instantly.

• Group Chats: Enables users to create groups for family, friends, or colleagues to

communicate collectively.

6. Voice over Internet Protocol (VoIP):

• Internet Calling: VoIP services like Skype, Zoom, and Google Meet allow users to

make voice and video calls over the internet.

• Video Conferencing: Used for virtual meetings, webinars, and online

collaboration in both personal and professional contexts.

7. Streaming Services:

• Video Streaming: Platforms like YouTube, Netflix, and Hulu offer on-demand

video content, including movies, TV shows, and live broadcasts.

• Music Streaming: Services such as Spotify, Apple Music, and Pandora provide

access to millions of songs, podcasts, and radio stations.

• Live Streaming: Twitch and YouTube Live allow users to broadcast live video to

audiences around the world.

8. Cloud Services:

• Data Storage: Cloud storage services like Google Drive, Dropbox, and OneDrive

offer users the ability to store and access files online from anywhere.

• Software as a Service (SaaS): Online applications like Google Workspace,

Microsoft 365, and Salesforce are provided via the cloud, eliminating the need

for local installation.

9. E-commerce and Online Banking:

• Online Shopping: Websites like Amazon, eBay, and Alibaba enable users to

purchase goods and services over the internet.

• Banking and Payments: Online banking services allow users to manage

accounts, transfer money, and pay bills. Payment gateways like PayPal and

Venmo facilitate secure online transactions.

10. Forums and Online Communities:

• Discussion Boards: Forums like Reddit, Quora, and Stack Overflow allow users

to engage in discussions, ask questions, and share knowledge on various topics.

• Special Interest Groups: Online communities where users with similar interests

can connect, share resources, and collaborate.

11. Online Gaming:

• Multiplayer Games: Platforms like Steam, PlayStation Network, and Xbox Live

enable users to play video games with others around the world.

• Esports: Competitive gaming events are streamed live, allowing users to watch

professional gamers compete in real-time.

12. Content Creation and Sharing:

• Blogs and Vlogs: Services like WordPress, Medium, and Blogger allow users to

create and share written content, while YouTube and TikTok are popular for video

content.

• Podcasting: Platforms like Anchor and SoundCloud enable users to create,

publish, and distribute audio content.

13. File Sharing:

• Peer-to-Peer (P2P): Services like BitTorrent allow users to share files directly

with others over the internet.

• File Transfer Services: Tools like WeTransfer and Google Drive are used for

sending large files between users.

14. Online Education:

• E-Learning Platforms: Websites like Coursera, Udemy, and Khan Academy

provide online courses and educational resources.

• Virtual Classrooms: Tools like Google Classroom, Blackboard, and Moodle

facilitate online learning and collaboration between students and teachers.

15. Remote Work and Collaboration:

• Project Management: Tools like Trello, Asana, and Monday.com help teams

manage projects and tasks online.

• Collaboration Software: Platforms like Slack and Microsoft Teams facilitate

communication and collaboration among remote teams.

16. Virtual and Augmented Reality (VR/AR):

• Virtual Worlds: VR platforms like Oculus and AltspaceVR provide immersive

experiences for gaming, socializing, and training.

• AR Apps: Augmented reality services, like those found in mobile apps, enhance

real-world experiences with digital overlays.

17. Internet of Things (IoT):

• Smart Devices: IoT refers to the network of connected devices that communicate

and share data, such as smart thermostats, security cameras, and wearable

technology.

• Home Automation: Services that allow users to control home devices remotely

via the internet, like smart lighting and appliances.

18. Online Dating:

• Matchmaking Services: Websites and apps like Tinder, Bumble, and OkCupid

connect people for romantic relationships, friendships, or social networking.

19. News and Information Services:

• Online News Portals: Websites like BBC, CNN, and The New York Times provide

up-to-date news, articles, and analysis.

• RSS Feeds: Allows users to subscribe to and receive updates from their favorite

websites and blogs.

20. Virtual Private Networks (VPNs):

• Security and Privacy: VPNs like NordVPN and ExpressVPN provide secure and

private access to the internet by encrypting data and masking users' IP

addresses.

Web Browser

Web browsers are software applications that allow users to access, retrieve, and view

content on the World Wide Web. They are the primary tools for navigating the internet,

enabling users to interact with websites, multimedia content, and web applications.

Here's an overview of web browsers, including their key features, examples, and how

they work:

Key Functions of Web Browsers:

1. Rendering Web Pages:

o HTML/CSS Parsing: Web browsers interpret HTML and CSS to display

web pages. They render text, images, videos, and interactive elements

according to the structure and styling defined by the web page’s code.

o JavaScript Execution: Browsers execute JavaScript to provide dynamic

content and interactivity, such as animations, form validations, and real-

time updates.

2. Navigating the Web:

o URL Bar: The address bar in a browser allows users to enter a Uniform

Resource Locator (URL) to visit specific websites.

o Hyperlink Navigation: Users can click on hyperlinks to move from one

web page to another, navigating through the interconnected content of the

web.

3. Security and Privacy:

o HTTPS: Browsers support secure connections using HTTPS, which

encrypts data between the browser and the web server to protect against

eavesdropping and tampering.

o Incognito/Private Mode: Most browsers offer a private browsing mode

that doesn't save browsing history, cookies, or form data.

o Pop-up Blockers and Ad Blockers: Browsers often include or support

extensions that block unwanted pop-ups and advertisements.

4. Extensions and Plugins:

o Customization: Users can enhance the functionality of their browser

through extensions and plugins, such as ad blockers, password

managers, and productivity tools.

o Add-ons: Many browsers have dedicated marketplaces for users to find

and install these extensions, like the Chrome Web Store or Firefox Add-

ons.

5. Tabs and Window Management:

o Tabbed Browsing: Modern browsers allow users to open multiple web

pages in separate tabs within a single window, making it easier to

multitask.

o Window Management: Users can open multiple browser windows, each

with its own set of tabs.

6. Bookmarking and History:

o Bookmarks: Browsers let users save their favorite websites for easy

access later.

o Browsing History: Browsers keep a history of visited websites, which

users can review and manage.

7. Search Integration:

o Default Search Engine: Most browsers have a default search engine

integrated into the address bar, allowing users to search the web directly

without navigating to a search engine’s homepage.

o Custom Search: Users can often change the default search engine to

their preferred provider.

Popular Web Browsers:

1. Google Chrome:

o Overview: Chrome is a popular web browser developed by Google. Known

for its speed, simplicity, and extensive library of extensions, it is widely

used across all major operating systems.

o Key Features: Syncing across devices, extensive extension support,

strong integration with Google services, and regular updates for

enhanced security.

2. Mozilla Firefox:

o Overview: Firefox is an open-source web browser developed by Mozilla. It

emphasizes privacy, customization, and performance.

o Key Features: Strong privacy features, customizable interface, wide range

of extensions, and support for open web standards.

3. Apple Safari:

o Overview: Safari is the default web browser for Apple devices, including

macOS and iOS. It is optimized for performance and energy efficiency on

Apple hardware.

o Key Features: Fast performance on Apple devices, strong privacy

protections, integration with Apple’s ecosystem (e.g., iCloud), and energy-

efficient design.

4. Microsoft Edge:

o Overview: Edge is Microsoft’s web browser, originally introduced with

Windows 10. The latest version, based on Chromium, offers improved

compatibility and performance.

o Key Features: Integration with Windows, support for Chrome extensions,

built-in tools for productivity (e.g., collections and vertical tabs), and

enhanced security features.

5. Opera:

o Overview: Opera is a web browser known for its innovative features, such

as a built-in VPN, ad blocker, and a sidebar for easy access to messaging

apps.

o Key Features: Free built-in VPN, integrated ad blocker, customizable

interface, and support for Chrome extensions.

6. Brave:

o Overview: Brave is a privacy-focused web browser that blocks ads and

trackers by default. It also offers a unique reward system for users who

opt into viewing privacy-respecting ads.

o Key Features: Strong privacy protections, built-in ad and tracker blocking,

cryptocurrency wallet integration, and faster page loading times.

7. Vivaldi:

o Overview: Vivaldi is a highly customizable web browser developed by

former Opera developers. It allows users to tailor nearly every aspect of

the browser’s interface and functionality.

o Key Features: Extensive customization options, built-in tools like note-

taking and screen capture, and support for Chrome extensions.

How Web Browsers Work:

1. DNS Resolution:

o When a user enters a URL, the browser communicates with a Domain

Name System (DNS) server to resolve the domain name into an IP

address. This IP address is used to locate the web server hosting the

requested website.

2. HTTP/HTTPS Request:

o The browser sends an HTTP or HTTPS request to the web server, asking

for the specific resource (e.g., a web page). The request includes

information such as the browser type, cookies, and other relevant data.

3. Response and Rendering:

o The web server responds with the requested resource, usually in the

form of an HTML document. The browser then parses the HTML, along

with any CSS and JavaScript files, to render the web page visually on the

screen.

4. Interactivity:

o The browser continues to interact with the server as needed, fetching

additional resources, handling user inputs, and updating the page

dynamically based on JavaScript execution.

Web Server

A web server is a software system that delivers web content and services to users

over the internet or an intranet. It hosts websites, processes client requests, and

serves the requested web pages to users’ browsers. Web servers play a crucial role in

the functioning of the World Wide Web by ensuring that websites are accessible to

users around the globe.

Key Functions of a Web Server:

1. Hosting Websites:

o File Storage: Web servers store website files, including HTML documents,

images, CSS stylesheets, JavaScript files, and other resources necessary

for a website to function.

o Database Interaction: Many web servers interact with databases to

retrieve, store, and manage dynamic content, such as user profiles,

product listings, and blog posts.

2. Processing Client Requests:

o HTTP/HTTPS Requests: Web servers receive requests from clients

(typically web browsers) via HTTP or HTTPS protocols. These requests

can be for web pages, images, or other resources.

o Request Handling: The server processes the request, often by retrieving

the requested file or generating content dynamically, and then sends the

appropriate response back to the client.

3. Serving Content:

o Static Content: This includes fixed files like HTML, CSS, images, and

videos that are delivered directly to the user as they are stored on the

server.

o Dynamic Content: Generated on-the-fly based on user interaction or

other factors. For example, a web server might run server-side scripts

(like PHP, Python, or Node.js) to generate custom content for each user

request.

4. Security:

o SSL/TLS Encryption: Web servers often use SSL/TLS certificates to

secure data transmission via HTTPS, protecting sensitive information

such as passwords and credit card details.

o Access Control: Servers can restrict access to certain resources,

requiring authentication (e.g., usernames and passwords) before allowing

access.

5. Load Balancing:

o Traffic Management: Web servers often work with load balancers to

distribute incoming traffic across multiple servers, ensuring no single

server is overwhelmed and improving performance and reliability.

6. Logging and Monitoring:

o Access Logs: Web servers maintain logs of all requests, including the

requested resource, the client’s IP address, the time of the request, and

the response status. These logs are essential for troubleshooting,

security auditing, and analytics.

o Monitoring: Continuous monitoring tools can track server performance,

uptime, and other critical metrics to ensure the server is running

smoothly.

Popular Web Server Software:

1. Apache HTTP Server:

o Overview: Apache is one of the most widely used web server software

systems. It's open-source, highly configurable, and supports a wide range

of operating systems, including Linux and Windows.

o Key Features: Modular architecture, extensive documentation, SSL/TLS

support, and strong community support.

2. Nginx:

o Overview: Nginx (pronounced "engine-x") is a high-performance web

server known for its speed, efficiency, and ability to handle high levels of

concurrent connections. It's also commonly used as a reverse proxy

server.

o Key Features: Load balancing, reverse proxy capabilities, low resource

consumption, and support for static and dynamic content.

3. Microsoft Internet Information Services (IIS):

o Overview: IIS is a web server developed by Microsoft, designed to run on

Windows Server operating systems. It’s deeply integrated with the

Windows ecosystem and supports a range of Microsoft technologies.

o Key Features: Strong integration with ASP.NET, comprehensive GUI for

management, and extensive support for Windows-based applications.

4. LiteSpeed:

o Overview: LiteSpeed is a commercial web server known for its high

performance, security features, and compatibility with Apache

configurations. It is often used as a drop-in replacement for Apache.

o Key Features: Built-in DDoS protection, advanced caching mechanisms,

and easy integration with control panels like cPanel.

5. Node.js:

o Overview: Node.js is not a traditional web server but a JavaScript runtime

that allows developers to create server-side applications using

JavaScript. It’s often used to build custom web servers.

o Key Features: Non-blocking I/O model, real-time web application support,

and a large ecosystem of packages via npm (Node Package Manager).

6. Tomcat:

o Overview: Apache Tomcat is an open-source Java Servlet container that

functions as a web server for Java-based applications. It’s widely used

for hosting Java web applications.

o Key Features: Support for Java Servlet, JSP, and WebSocket

technologies, integration with other Apache software, and scalability for

enterprise applications.

How a Web Server Works:

1. Client Request:

o A user enters a URL in their web browser or clicks on a hyperlink. This

action sends a request to the web server associated with that URL.

2. DNS Resolution:

o The browser sends the domain name to a DNS server, which resolves the

domain name into an IP address. This IP address is used to locate the

web server hosting the requested website.

3. Connection Establishment:

o The browser establishes a connection with the web server using TCP/IP,

typically on port 80 (for HTTP) or port 443 (for HTTPS).

4. Request Handling:

o The web server receives the request, processes it (which may involve

retrieving a static file or executing server-side code), and prepares a

response.

5. Response:

o The web server sends the requested content back to the client’s browser,

usually in the form of an HTML document, along with associated

resources like images, CSS, and JavaScript files.

6. Rendering:

o The browser renders the received content, displaying the web page to the

user. The user can then interact with the page, possibly generating more

requests.

Role of Web Servers in Modern Web Applications:

• Scalability: Web servers are designed to handle thousands or even millions of

requests per second. Modern architectures often employ multiple web servers

in a load-balanced environment to distribute traffic and ensure scalability.

• Microservices: In cloud-based and microservices architectures, web servers

often host microservices that communicate via APIs (Application Programming

Interfaces) to provide complex functionality.

• Content Delivery Networks (CDNs): Web servers work in conjunction with CDNs

to cache and deliver content from geographically distributed servers, reducing

latency and improving load times for users worldwide.

• Serverless Computing: Some modern applications use serverless architectures,

where code is executed in response to events, and the underlying server

infrastructure is abstracted away. However, web servers still play a role in

handling HTTP requests and routing them to the appropriate functions.

Web Directories

Web directories are organized collections of websites and online resources,

categorized and listed based on topics, subjects, or themes. Unlike search engines,

which index the web automatically using algorithms, web directories are typically

curated by human editors who evaluate and categorize websites manually. This human

curation ensures that the listed sites are relevant, trustworthy, and of high quality.

Key Features of Web Directories:

1. Categorization:

o Hierarchical Structure: Web directories are organized into categories and

subcategories, much like a library’s classification system. For example, a

directory might have a top-level category like "Health," with

subcategories such as "Nutrition," "Diseases," and "Fitness."

o Topic-Specific Listings: Websites are listed under specific categories that

best describe their content, making it easier for users to find relevant

resources.

2. Human Curation:

o Quality Control: Human editors review submissions to ensure that only

reputable and relevant websites are included. This reduces the likelihood

of spam, low-quality content, or irrelevant sites.

o Content Descriptions: Each listing in a web directory typically includes a

brief description of the website, helping users understand its purpose

and content before visiting.

3. Search Functionality:

o Search within Directory: While primarily organized by categories, many

web directories also offer a search feature that allows users to find

listings by entering keywords or phrases.

o Filter Options: Users can often filter search results by category, language,

region, or other criteria to narrow down their options.

4. Submission Process:

o Site Submission: Website owners can submit their sites to be listed in a

web directory. This submission often requires providing details such as

the website’s title, URL, description, and category.

o Approval and Listing: After submission, an editor reviews the site for

relevance, quality, and adherence to the directory’s guidelines before it is

approved and listed.

5. Regional or Niche Directories:

o Local Directories: Some web directories focus on specific geographic

regions, listing websites relevant to a particular country, state, or city.

o Niche Directories: These directories specialize in a specific industry or

topic, such as business, education, technology, or health.

Examples of Web Directories:

1. DMOZ (Open Directory Project):

o Overview: DMOZ was one of the largest and most comprehensive web

directories, created and maintained by a community of volunteer editors.

It categorized websites across a wide range of topics and regions.

o Status: DMOZ was discontinued in 2017, but its legacy continues through

clones and archives.

2. Yahoo! Directory:

o Overview: Yahoo! Directory was one of the earliest and most popular web

directories, organizing websites into categories for easy navigation. It

played a significant role in the early days of the web before being

discontinued in 2014.

o Legacy: Yahoo! Directory was instrumental in shaping how people

navigated the web in the late 1990s and early 2000s.

3. Best of the Web (BOTW):

o Overview: BOTW is a long-standing web directory that categorizes

websites across various industries and topics. It offers both free and paid

listings, with a focus on quality and relevance.

o Key Features: High editorial standards, a wide range of categories, and a

reputation for listing quality websites.

4. Business.com:

o Overview: Business.com started as a web directory focused on business-

related websites and resources. It serves as a B2B directory, connecting

businesses with vendors, products, and services.

o Key Features: Focus on business categories, useful for entrepreneurs,

small businesses, and corporate users.

5. Jasmine Directory:

o Overview: Jasmine Directory is a hand-picked web directory that

emphasizes quality over quantity. It covers a variety of topics and

industries, with detailed descriptions for each listing.

o Key Features: Strict editorial review, focus on trustworthy sites, and

detailed categories.

How Web Directories Differ from Search Engines:

1. Curation vs. Automation:

o Web Directories: Curated by humans, with editors evaluating each site

before listing it. This ensures high-quality and relevant results but can

limit the number of listings.

o Search Engines: Use automated bots (crawlers) to index millions of web

pages, providing a vast array of results. However, the quality and

relevance of these results depend on algorithms, which can sometimes

include irrelevant or low-quality sites.

2. Purpose and Use Cases:

o Web Directories: Best for finding vetted, high-quality websites within

specific categories. Useful for niche research, business listings, and

discovering reputable resources.

o Search Engines: Ideal for broad searches and finding information on

almost any topic. Useful for quick searches, finding recent content, and

discovering new websites.

3. Search Scope:

o Web Directories: Typically cover a smaller, more curated subset of the

web, focusing on specific categories or regions.

o Search Engines: Index a vast portion of the internet, providing results

from a much broader range of websites.

Advantages and Disadvantages of Web Directories:

Advantages:

• Quality Control: Listings are reviewed by human editors, reducing the chances of

encountering spam, malware, or low-quality content.

• Organized Browsing: The hierarchical structure allows users to easily navigate

and explore related websites within a category.

• Niche Focus: Specialized directories can be invaluable for finding resources in

specific fields or industries.

Disadvantages:

• Limited Listings: Due to the manual submission and review process, web

directories may not have as many listings as search engines.

• Outdated Information: Some web directories may not be updated frequently,

leading to outdated or inactive links.

• Declining Popularity: With the rise of advanced search engines, the use of web

directories has declined, making them less relevant in some contexts.

The Role of Web Directories Today:

While the popularity of web directories has waned with the advent of sophisticated

search engines like Google, they still serve important roles, especially in niche

industries and for specialized research. Some modern directories have evolved to

focus on quality over quantity, offering curated lists of reputable sites in specific areas

of interest.

Websites

are collections of interlinked web pages that are hosted on a web server and

accessible through the internet via a web browser. They serve as the digital presence

for individuals, businesses, organizations, and governments, providing information,

services, products, and entertainment to users worldwide.

Key Components of a Website:

1. Web Pages:

o HTML Documents: Each web page is typically an HTML document that can

include text, images, videos, and other multimedia elements. HTML

(HyperText Markup Language) is the standard language used to create

web pages.

o CSS (Cascading Style Sheets): CSS is used to style the appearance of web

pages, controlling layout, colors, fonts, and other visual aspects.

o JavaScript: JavaScript is a scripting language used to add interactivity

and dynamic content to web pages, such as animations, form validations,

and real-time data updates.

2. Domain Name:

o URL (Uniform Resource Locator): The address of a website on the

internet, such as "www.example.com." A domain name is a human-

readable version of an IP address, which identifies the location of the

website's server.

o Top-Level Domain (TLD): The suffix at the end of a domain name, such as

".com," ".org," ".net," ".edu," and country-specific TLDs like ".uk" or ".jp."

3. Web Hosting:

o Web Server: A server that stores website files and delivers them to users

when requested. The server processes requests and sends the

appropriate web pages to the user’s browser.

o Hosting Provider: A company that provides the technology and services

needed to host a website, including server space, bandwidth, security,

and maintenance.

4. Content Management System (CMS):

o Overview: A CMS is a software platform that allows users to create,

manage, and modify website content without needing extensive technical

knowledge. Popular CMSs include WordPress, Joomla, and Drupal.

o Functionality: CMSs typically offer templates, plugins, and a user-friendly

interface for content creation and management.

5. Multimedia Elements:

o Images and Graphics: Visual elements that enhance the user experience,

convey information, or add aesthetic value to the website.

o Videos and Animations: Multimedia content that can be embedded in web

pages to provide tutorials, demonstrations, entertainment, or marketing

content.

o Audio: Sound files, such as podcasts, music, or voiceovers, that can be

played directly from a web page.

6. Navigation:

o Menus: A list of links, usually displayed at the top or side of a web page,

that allows users to navigate different sections of the website.

o Internal Links: Hyperlinks within a website that connect different pages,

helping users move through the site seamlessly.

o Breadcrumbs: A navigation aid that shows users their current location

within the website's hierarchy and provides links to previous sections.

7. Interactive Features:

o Forms: Web forms allow users to submit information, such as contact

details, feedback, or orders, directly through the website.

o User Accounts: Some websites offer user registration, enabling

personalized experiences, such as saved preferences, order history, and

member-only content.

o Search Bar: A feature that allows users to search for specific content

within the website.

Types of Websites:

1. Personal Websites:

o Overview: Created by individuals to share personal information, blogs,

portfolios, hobbies, or resumes. They often serve as a digital presence for

the owner.

o Examples: Blogs, personal portfolios, hobby sites, and family photo

galleries.

2. Business Websites:

o Overview: These websites represent businesses, providing information

about products, services, contact details, and e-commerce functionality.

o Examples: Company websites, e-commerce sites, and online stores.

3. Educational Websites:

o Overview: Websites dedicated to providing educational content,

resources, and tools for students, teachers, and lifelong learners.

o Examples: Online courses, school websites, educational blogs, and e-

learning platforms.

4. Government Websites:

o Overview: Websites created by local, state, or federal government

agencies to provide information, services, and resources to citizens.

o Examples: Government portals, public service websites, and online tax

filing services.

5. Nonprofit and Advocacy Websites:

o Overview: Websites that represent nonprofit organizations, charities, or

advocacy groups. They often include information about the organization's

mission, donation options, and ways to get involved.

o Examples: Charity websites, environmental advocacy sites, and social

justice organizations.

6. Entertainment Websites:

o Overview: Websites focused on providing entertainment content, such as

movies, music, games, and news.

o Examples: Streaming platforms, gaming sites, celebrity news, and online

magazines.

7. News and Media Websites:

o Overview: Websites that deliver news articles, videos, and other media

content to the public. They often include real-time updates, opinion

pieces, and multimedia content.

o Examples: Online newspapers, news portals, and TV networks’ websites.

8. Social Media Websites:

o Overview: Platforms that allow users to create profiles, share content,

and interact with others through posts, comments, and messages.

o Examples: Facebook, Twitter, Instagram, LinkedIn.

9. Forums and Community Websites:

o Overview: Websites that provide a platform for users to discuss topics,

share advice, and build communities around shared interests.

o Examples: Reddit, Quora, online discussion boards, and niche community

sites.

10. Portfolio Websites:

o Overview: Websites created by professionals such as artists, designers,

writers, and photographers to showcase their work and attract clients or

employers.

o Examples: Online portfolios, photography galleries, and creative

showcases.

How Websites Work:

1. Client-Server Interaction:

o User Request: A user enters a website’s URL in their browser, sending a

request to the web server hosting the website.

o Server Response: The web server processes the request and sends the

requested web page (HTML document) back to the user's browser.

o Rendering: The browser interprets the HTML, CSS, and JavaScript files to

display the web page on the user's screen.

2. Backend and Frontend:

o Frontend: The part of the website that users interact with directly,

including the layout, design, and content. It involves technologies like

HTML, CSS, and JavaScript.

o Backend: The server-side part of the website that handles data

processing, database management, and server logic. It involves

programming languages like PHP, Python, Ruby, or Java, and databases

like MySQL or MongoDB.

3. Responsive Design:

o Mobile Optimization: Websites are often designed to be responsive,

meaning they automatically adjust their layout and content to fit different

screen sizes, such as smartphones, tablets, and desktops.

o Cross-Browser Compatibility: Ensuring that a website functions correctly

across different web browsers (e.g., Chrome, Firefox, Safari) is crucial for

accessibility.

4. Content Delivery Networks (CDNs):

o Global Distribution: CDNs are networks of servers distributed across

multiple locations worldwide. They cache and deliver website content

from the server closest to the user, reducing load times and improving

performance.

The Role of Websites in the Digital World:

• Information Dissemination: Websites are a primary source of information for

billions of users, providing access to knowledge, news, and resources across

various fields.

• Commerce and Services: E-commerce websites enable businesses to sell

products and services online, while service-oriented sites offer everything from

banking to healthcare.

• Communication and Interaction: Social media and community websites allow

people to connect, share ideas, and engage in discussions on a global scale.

• Entertainment and Culture: Websites offer a vast array of entertainment options,

including streaming services, online games, and cultural content, accessible to

users anytime, anywhere.

• Education and Learning: Educational websites and platforms provide courses,

tutorials, and resources for learners of all ages, making education more

accessible.

Static and dynamic websites

Static and dynamic websites differ primarily in how their content is delivered and how

they function. Here’s a detailed comparison:

Static Websites:

Definition:

• A static website consists of fixed content. Each page is a separate HTML file,

and the content displayed to the user does not change unless manually updated

by the website owner or developer.

Key Characteristics:

1. Fixed Content:

o The content on a static website remains the same for every user. It is

pre-written and stored on the server, and each time a user accesses the

website, the same content is delivered.

2. Simple Development:

o Static websites are generally simpler and faster to develop because they

consist of straightforward HTML, CSS, and sometimes JavaScript. There’s

no need for server-side scripting or database interaction.

3. Low Server Load:

o Since static websites don’t require server-side processing or database

queries, they put less load on the server. This often results in faster

loading times.

4. Security:

o Static websites are generally more secure than dynamic websites

because they do not involve server-side processing or databases,

reducing the risk of hacking and exploits.

5. Scalability:

o They are easily scalable because serving static content to a large number

of users is straightforward and can be efficiently managed using Content

Delivery Networks (CDNs).

6. Updates:

o Content updates must be done manually by editing the HTML files. This

can be time-consuming, especially for larger websites.

Examples:

• Personal blogs (without frequent updates)

• Small business websites

• Portfolios

• Brochure sites

Advantages:

• Speed: Static websites load quickly due to their simplicity and lack of complex

processing.

• Cost-Effective: Easier and cheaper to host since they require minimal server

resources.

• Security: Fewer points of vulnerability due to the absence of server-side logic.

Disadvantages:

• Limited Functionality: Cannot handle complex, interactive features like user

logins, comments, or real-time updates.

• Maintenance: Updating content can be cumbersome, especially for non-technical

users or large sites.

Dynamic Websites:

Definition:

• A dynamic website generates content on the fly based on user interactions or

other factors. Content can change dynamically, and pages are often generated

by server-side scripts and connected to a database.

Key Characteristics:

1. Dynamic Content:

o Content on dynamic websites can change based on user input,

preferences, or other criteria. For example, a user might see different

content based on their location, login status, or previous interactions.

2. Server-Side Processing:

o Dynamic websites rely on server-side technologies like PHP, ASP.NET,

Ruby on Rails, Python (Django, Flask), or Node.js to generate web pages.

They often interact with databases to fetch and display content.

3. Interactivity:

o These websites can offer interactive features like user accounts,

comments, forms, and real-time data updates. For example, an e-

commerce site displays different products and prices based on user

choices and inventory levels.

4. Content Management:

o Dynamic websites often use Content Management Systems (CMS) like

WordPress, Joomla, or Drupal, allowing non-technical users to update

content easily through a user-friendly interface.

5. Personalization:

o Content can be personalized for each user, such as displaying a

personalized dashboard, recommendations, or tailored information.

6. Database Connectivity:

o Dynamic websites usually connect to a database to store and retrieve

data. This allows for the management of large volumes of content, user

data, and transactions.

Examples:

• Social media platforms

• E-commerce sites

• News websites

• Online forums

• Streaming services

Advantages:

• Functionality: Can handle complex, interactive features that static websites

cannot, such as user authentication, personalized content, and data-driven

applications.

• Ease of Updates: Content can be updated dynamically through a CMS without the

need for direct coding.

• Scalability: Suitable for large websites with a lot of content that needs to be

managed dynamically.

Disadvantages:

• Complexity: More complex to develop and maintain due to the need for server-

side scripting, database management, and security measures.

• Cost: Typically more expensive to host and manage, as they require more server

resources and technical expertise.

• Security: Greater risk of security vulnerabilities, such as SQL injection or cross-

site scripting (XSS), due to the complexity of server-side processing.

Summary of Differences:

Aspect Static Website Dynamic Website

Content Fixed, does not change Dynamic, changes based on user

interaction

Development Simple, uses HTML, CSS Complex, uses server-side scripting

Interactivity Limited High, supports interactive features

Server Load Low, no server-side

processing

Higher, requires server-side

processing

Security Generally more secure Greater risk of vulnerabilities

Update

Process

Manual, requires HTML edits Easy, often through CMS

Use Cases Simple sites like portfolios,

blogs

Complex sites like social networks,

e-commerce

Cost Lower hosting and

development costs

Higher due to resource and

maintenance needs

Speed Generally faster to load Can be slower, depending on server

load

Search Engine

A search engine is a software system designed to search for information on the

internet. It retrieves and organizes relevant data based on the user's query, presenting

it in a ranked list of results. Search engines are one of the most essential tools for

navigating the vast amount of information available online.

Key Components of a Search Engine:

1. Web Crawlers (Spiders or Bots):

o Function: These are automated programs that systematically browse the

web to index pages. Crawlers visit websites, follow links, and gather

information from web pages, storing it in the search engine's database.

o Crawling Process: The crawler begins with a list of known URLs and

fetches the content of these pages. It then follows hyperlinks within these

pages to discover new URLs, continuing this process to build a

comprehensive index of the web.

2. Indexing:

o Function: After crawling, the collected data is organized and stored in an

index. The index is a vast database of all the web pages and their content,

making it easier and faster for the search engine to retrieve relevant

information when a user submits a query.

o Content Organization: The index includes details like keywords, meta tags,

page titles, and the structure of the content. This organization helps the

search engine understand what each page is about.

3. Search Algorithm:

o Function: The search algorithm is the heart of the search engine,

determining which pages are most relevant to a user's query. It analyzes

the indexed data and ranks pages based on various factors, such as

keyword relevance, page authority, user engagement, and more.

o Factors Considered: Common factors include keyword usage, backlinks

(other sites linking to the page), page load speed, mobile-friendliness,

and user behavior signals (like click-through rates).

4. Query Processor:

o Function: When a user enters a query, the search engine’s query

processor interprets it and matches it against the indexed content. It

considers factors like spelling corrections, synonyms, and search intent

to provide the most accurate results.

o Natural Language Processing (NLP): Advanced search engines use NLP

to understand the context and meaning behind a query, improving the

accuracy of search results, especially for more complex or

conversational queries.

5. Ranking System:

o Function: The ranking system orders the search results based on their

relevance and quality. The most relevant and authoritative pages appear

higher in the search results, while less relevant pages are ranked lower.

o PageRank: Originally developed by Google, PageRank is one of the many

factors used in ranking algorithms, which evaluates the importance of a

page based on the number and quality of backlinks it has.

6. Search Results Page (SERP):

o Function: The Search Engine Results Page (SERP) is what users see after

submitting a query. It typically includes a list of web pages, along with

additional features like ads, images, videos, local results, and rich

snippets.

o Features: SERPs often include organic results, paid ads (sponsored

links), knowledge panels, featured snippets, "People also ask" sections,

and more.

Types of Search Engines:

1. General Search Engines:

o Examples: Google, Bing, Yahoo.

o Function: These search engines index a broad range of websites and

provide general-purpose search services. They are designed to answer a

wide variety of queries across different topics.

2. Vertical Search Engines:

o Examples: Google Scholar (academic papers), Yelp (local businesses),

Zillow (real estate).

o Function: Vertical search engines specialize in a specific niche or

industry, focusing on particular types of content like academic papers, job

listings, local businesses, or real estate.

3. Metasearch Engines:

o Examples: DuckDuckGo, Dogpile.

o Function: Metasearch engines aggregate results from multiple search

engines. They don’t have their own index; instead, they pull data from

other search engines and present a combined list of results.

4. Private Search Engines:

o Examples: DuckDuckGo, StartPage.

o Function: These search engines emphasize user privacy, avoiding the

tracking and profiling practices common in many general search engines.

They often do not store user data or use personalized search results.

How Search Engines Work:

1. Crawling:

o The search engine sends out crawlers to explore the web, following links

and gathering data from web pages. This process is continuous, with the

crawler constantly updating the index with new and updated content.

2. Indexing:

o The collected data is processed and stored in an index, a vast database of

all the content the crawler has found. The index is organized so that the

search engine can quickly retrieve relevant information when needed.

3. Processing the Query:

o When a user enters a search query, the search engine’s query processor

interprets it and matches it against the indexed content. The processor

considers the intent behind the query, synonyms, and other linguistic

factors.

4. Ranking the Results:

o The search engine’s algorithm evaluates the indexed pages to determine

which ones are most relevant to the user’s query. It ranks these pages

based on factors like keyword relevance, authority, user experience, and

more.

5. Displaying the Results:

o The search engine presents the ranked list of results on the SERP. The

results may include a mix of organic listings, ads, images, videos, news,

and other specialized content.

Importance of Search Engines:

1. Information Retrieval:

o Search engines are vital tools for finding information quickly and

efficiently. They help users locate relevant content across the web,

whether for research, shopping, news, or entertainment.

2. Business Visibility:

o For businesses, appearing in search engine results is crucial for visibility

and attracting customers. Search engine optimization (SEO) strategies

are often employed to improve a website’s ranking on SERPs.

3. Content Discovery:

o Search engines help users discover new content, websites, and

resources. This is particularly important for content creators, businesses,

and marketers looking to reach a broader audience.

4. User Experience:

o The effectiveness of a search engine greatly impacts user experience. A

good search engine delivers relevant, accurate, and timely results,

enhancing user satisfaction.

Challenges and Considerations:

1. Search Engine Optimization (SEO):

o Websites often employ SEO strategies to improve their ranking in search

results. This includes optimizing content, using keywords effectively,

building quality backlinks, and ensuring a good user experience.

2. Search Engine Marketing (SEM):

o SEM involves paid advertising on search engines. Businesses pay to have

their ads appear at the top of SERPs, often labeled as "sponsored" or

"ad."

3. Privacy Concerns:

o Many search engines track user behavior to deliver personalized results

and ads. This has raised privacy concerns, leading to the popularity of

private search engines that prioritize user anonymity.

4. Algorithm Bias:

o Search engine algorithms can sometimes reflect biases, whether through

the ranking of content or the filtering of information. This can impact what

information users are exposed to, potentially reinforcing certain

perspectives.

Popular Search Engines:

1. Google:

o The dominant search engine globally, known for its powerful algorithms,

vast index, and user-friendly features like Google Images, Maps, and

News.

2. Bing:

o Microsoft’s search engine, known for integrating with other Microsoft

services and offering rewards for users who search through its platform.

3. Yahoo:

o Once a leading search engine, Yahoo now relies on partnerships with

other search engines like Bing for its search results.

4. DuckDuckGo:

o A privacy-focused search engine that does not track users or personalize

search results, gaining popularity for its commitment to user privacy.

5. Baidu:

o The leading search engine in China, offering services similar to Google

but tailored to the Chinese language and market.

6. Yandex:

o A popular search engine in Russia, known for its comprehensive local

services and search capabilities.

Web Page Program Development

Web page program development refers to the process of creating, designing, and

coding web pages that can be accessed via the internet. This involves a combination of

front-end and back-end development, utilizing various programming languages, tools,

and frameworks.

Stages of Web Page Program Development:

1. Planning and Requirements Gathering:

o Goal Setting: Define the purpose of the website or web page (e.g.,

informational, e-commerce, portfolio).

o Audience Analysis: Understand the target audience and their needs.

o Feature Specification: Identify the features and functionalities the web

page needs (e.g., forms, user login, interactive elements).

o Content Planning: Plan the content that will be included, such as text,

images, videos, and other multimedia.

2. Design:

o Wireframing: Create basic sketches or wireframes that outline the layout

and structure of the web page.

o Prototyping: Develop a more detailed prototype that includes design

elements like color schemes, typography, and user interface (UI)

components.

o Responsive Design: Ensure the design adapts to different screen sizes

and devices (mobile, tablet, desktop).

o User Experience (UX): Focus on creating a user-friendly experience, with

intuitive navigation and clear calls to action.

3. Front-End Development:

o HTML (HyperText Markup Language):

▪ Structure: HTML is the backbone of a web page, defining the

structure and content. It uses tags to denote different elements

(e.g., headings, paragraphs, links, images).

▪ Semantic Markup: Use HTML5 for semantic tags like <header>,

<footer>, <article>, and <section> to improve accessibility and SEO.

o CSS (Cascading Style Sheets):

▪ Styling: CSS is used to style the HTML content, including layout,

colors, fonts, and other visual elements.

▪ Responsive Design: Use media queries to create responsive

designs that adapt to different screen sizes.

▪ CSS Frameworks: Utilize frameworks like Bootstrap, Tailwind CSS,

or Foundation to speed up development with pre-designed

components.

o JavaScript:

▪ Interactivity: JavaScript adds interactivity to web pages, enabling

dynamic content, animations, and user interactions (e.g., form

validation, modal windows, dropdowns).

▪ DOM Manipulation: JavaScript can manipulate the Document Object

Model (DOM) to update content dynamically without reloading the

page.

▪ JavaScript Frameworks/Libraries: Use libraries like jQuery or

frameworks like React, Angular, or Vue.js to simplify and enhance

front-end development.

o Version Control:

▪ Git: Implement version control using Git to track changes in the

codebase, collaborate with other developers, and manage code

history.

▪ Repositories: Use platforms like GitHub, GitLab, or Bitbucket to

host and manage the codebase.

4. Back-End Development (for Dynamic Web Pages):

o Server-Side Scripting:

▪ Languages: Use server-side languages like PHP, Python (Django,

Flask), Ruby (Ruby on Rails), JavaScript (Node.js), or Java (Spring)

to handle server-side logic.

▪ Dynamic Content: Generate dynamic content based on user input,

database queries, or other criteria.

o Database Integration:

▪ Databases: Connect the web page to a database (e.g., MySQL,

PostgreSQL, MongoDB) to store and retrieve data like user

information, product details, or blog posts.

▪ CRUD Operations: Implement Create, Read, Update, and Delete

(CRUD) operations to manage data within the database.

o APIs (Application Programming Interfaces):

▪ RESTful APIs: Develop or consume RESTful APIs to allow

communication between the front-end and back-end or to

integrate third-party services.

▪ Authentication: Implement authentication methods like OAuth, JWT

(JSON Web Tokens), or session-based authentication for secure

user access.

o Security:

▪ Data Protection: Ensure data security with practices like

encryption (SSL/TLS), secure authentication, and input validation

to prevent attacks like SQL injection and cross-site scripting (XSS).

▪ User Authentication: Implement secure login and session

management to protect user accounts.

5. Testing:

o Unit Testing: Write and run tests for individual components or functions to

ensure they work as expected.

o Integration Testing: Test how different components of the web page

interact with each other.

o Cross-Browser Testing: Ensure the web page functions correctly across

different web browsers (e.g., Chrome, Firefox, Safari, Edge).

o Performance Testing: Analyze and optimize the web page’s load time and

responsiveness.

o User Testing: Gather feedback from users to identify usability issues and

make necessary improvements.

6. Deployment:

o Hosting: Choose a web hosting service to make the web page accessible

online. Options include shared hosting, VPS (Virtual Private Server), cloud

hosting, or dedicated servers.

o Domain Name: Register a domain name (e.g., www.example.com) and

configure DNS settings to point to the hosting server.

o Deployment Tools: Use tools like FTP (File Transfer Protocol), SSH, or

continuous integration/continuous deployment (CI/CD) pipelines to deploy

the web page to the server.

o SSL Certificate: Implement an SSL certificate to enable HTTPS, ensuring

secure communication between the server and users' browsers.

7. Maintenance and Updates:

o Monitoring: Continuously monitor the web page for performance, security,

and uptime using tools like Google Analytics, New Relic, or other

monitoring services.

o Bug Fixes: Regularly update the web page to fix bugs, patch security

vulnerabilities, and improve performance.

o Content Updates: Keep the content fresh and relevant by regularly

updating text, images, and other media.

o Scaling: As the web page grows, consider scaling the infrastructure (e.g.,

upgrading hosting plans, optimizing databases) to handle increased

traffic.

Tools and Technologies Commonly Used:

1. Text Editors/IDEs:

o VS Code, Sublime Text, Atom, IntelliJ IDEA: Popular text editors and

integrated development environments (IDEs) for coding.

2. Frameworks and Libraries:

o Front-End: React.js, Angular, Vue.js, Bootstrap, Tailwind CSS.

o Back-End: Express.js (Node.js), Django (Python), Ruby on Rails, Laravel

(PHP).

3. Version Control Systems:

o Git, GitHub, GitLab, Bitbucket: For managing code versions and

collaboration.

4. Design Tools:

o Figma, Adobe XD, Sketch: For creating wireframes, prototypes, and UI

designs.

5. Testing Tools:

o Jest, Mocha, Selenium, Cypress: For automated testing and ensuring code

quality.

6. Deployment Platforms:

o Netlify, Vercel, Heroku, AWS, DigitalOcean: For deploying and hosting web

pages.

Roles in Web site development team

A website development team typically consists of various roles, each specializing in

different aspects of the development process. The specific roles can vary depending on

the size and scope of the project, but here are the common roles you might find in a

web development team:

1. Project Manager (PM)

• Responsibilities:

o Oversee the project from inception to completion.

o Manage timelines, budgets, and resources.

o Coordinate between different team members and stakeholders.

o Ensure that the project meets its goals and deadlines.

• Skills:

o Strong organizational and leadership skills.

o Excellent communication and problem-solving abilities.

o Familiarity with project management tools (e.g., Jira, Trello).

2. Business Analyst (BA)

• Responsibilities:

o Gather and analyze business requirements from stakeholders.

o Translate business needs into technical specifications.

o Create detailed documentation and user stories.

o Ensure that the final product meets business objectives.

• Skills:

o Analytical and problem-solving skills.

o Experience in creating requirements documents and user stories.

o Understanding of both business processes and technology.

3. UI/UX Designer

• Responsibilities:

o Design the user interface (UI) and user experience (UX) of the website.

o Create wireframes, prototypes, and mockups.

o Conduct user research and usability testing.

o Ensure the website is visually appealing and user-friendly.

• Skills:

o Proficiency in design tools (e.g., Figma, Adobe XD, Sketch).

o Understanding of user behavior and design principles.

o Experience in creating responsive and accessible designs.

4. Front-End Developer

• Responsibilities:

o Implement the visual and interactive aspects of the website using HTML,

CSS, and JavaScript.

o Ensure the website is responsive and works across different devices and

browsers.

o Collaborate with designers to translate designs into functional web

pages.

o Optimize website performance and load times.

• Skills:

o Proficiency in HTML, CSS, JavaScript, and front-end frameworks (e.g.,

React, Vue.js).

o Knowledge of responsive design techniques and cross-browser

compatibility.

o Familiarity with version control systems (e.g., Git).

5. Back-End Developer

• Responsibilities:

o Develop and maintain the server-side logic, databases, and APIs.

o Handle server configuration, data storage, and application security.

o Integrate the back-end with the front-end to ensure data flow and

functionality.

o Optimize server performance and scalability.

• Skills:

o Proficiency in server-side languages (e.g., PHP, Python, Ruby, Node.js).

o Experience with databases (e.g., MySQL, PostgreSQL, MongoDB).

o Knowledge of server management and API development.

6. Full-Stack Developer

• Responsibilities:

o Work on both the front-end and back-end of the website.

o Bridge the gap between design and functionality by handling both client-

side and server-side development.

o Ensure smooth integration between front-end and back-end components.

• Skills:

o Proficiency in both front-end and back-end technologies.

o Experience with full-stack frameworks and tools.

o Strong problem-solving and communication skills.

7. Quality Assurance (QA) Tester

• Responsibilities:

o Test the website for bugs, usability issues, and compliance with

requirements.

o Create and execute test cases, report defects, and work with developers

to resolve issues.

o Ensure the website meets quality standards before deployment.

• Skills:

o Experience with manual and automated testing tools.

o Attention to detail and strong analytical skills.

o Familiarity with testing frameworks and bug-tracking tools.

8. Content Strategist/Writer

• Responsibilities:

o Develop and manage the content strategy for the website.

o Write, edit, and proofread website content, including text, images, and

multimedia.

o Ensure content is aligned with the website’s goals and user needs.

o Collaborate with designers and developers to integrate content

effectively.

• Skills:

o Strong writing and editing skills.

o Experience with content management systems (CMS).

o Understanding of SEO and content optimization.

9. SEO Specialist

• Responsibilities:

o Optimize the website for search engines to improve visibility and ranking.

o Conduct keyword research, on-page optimization, and backlink

strategies.

o Monitor and analyze website performance using SEO tools.

o Stay updated with the latest SEO trends and algorithms.

• Skills:

o Knowledge of SEO best practices and tools (e.g., Google Analytics,

SEMrush).

o Understanding of search engine algorithms and ranking factors.

o Experience with keyword research and link-building strategies.

10. DevOps Engineer

• Responsibilities:

o Manage deployment processes and server infrastructure.

o Automate and streamline development workflows and deployment

pipelines.

o Ensure the website’s reliability, scalability, and performance.

o Monitor and maintain the website’s uptime and security.

• Skills:

o Proficiency in deployment tools and automation (e.g., Docker, Jenkins).

o Experience with cloud services (e.g., AWS, Azure, Google Cloud).

o Knowledge of server management and infrastructure as code (IaC).

11. Web Administrator

• Responsibilities:

o Maintain and manage the website’s hosting environment and server

configurations.

o Handle backups, updates, and security patches.

o Troubleshoot and resolve server and hosting issues.

• Skills:

o Experience with web hosting platforms and server administration.

o Knowledge of web server technologies (e.g., Apache, Nginx).

o Familiarity with security practices and backup solutions.

12. Graphic Designer

• Responsibilities:

o Create visual assets for the website, such as logos, icons, and graphics.

o Work with UI/UX designers to ensure visual consistency and branding.

o Design promotional materials and other visual elements as needed.

• Skills:

o Proficiency in graphic design software (e.g., Adobe Photoshop,

Illustrator).

o Understanding of visual design principles and branding.

o Ability to create high-quality, web-ready graphics.

Web Development Scope

Web development scope refers to the range of tasks, features, and functionalities that

are defined for a web development project. It outlines what the project will include and

what it will not, setting clear boundaries and expectations for stakeholders. Defining

the scope is crucial for successful project management, ensuring that resources are

used effectively and that the final product meets the intended goals.

Components of Web Development Scope

1. Project Objectives:

o Definition: Clearly define the goals and purpose of the web development

project.

o Examples: Create an e-commerce platform, develop a corporate website,

build a portfolio site, or establish an online community.

2. Functional Requirements:

o Definition: Outline the specific functionalities and features the website

will include.

o Examples: User authentication, shopping cart, search functionality,

content management system (CMS), interactive forms, and user profiles.

3. Non-Functional Requirements:

o Definition: Specify the quality attributes and constraints that the project

must meet.

o Examples: Performance (e.g., load times), security (e.g., data protection),

scalability (e.g., handling increased traffic), and accessibility (e.g.,

compliance with WCAG).

4. Technical Requirements:

o Definition: Identify the technical specifications and tools that will be used

in the project.

o Examples: Technology stack (e.g., HTML, CSS, JavaScript, frameworks),

hosting environment (e.g., cloud, shared hosting), and database systems

(e.g., MySQL, MongoDB).

5. Design and User Experience (UX):

o Definition: Define the design and UX elements, including the look and feel

of the website.

o Examples: Wireframes, prototypes, visual design guidelines, responsive

design considerations, and user interface (UI) components.

6. Content Requirements:

o Definition: Specify the content that will be included on the website and

how it will be managed.

o Examples: Text, images, videos, blog posts, product descriptions, and

content management procedures.

7. Integration Requirements:

o Definition: Detail any external systems or services that the website will

need to integrate with.

o Examples: Payment gateways, social media platforms, third-party APIs,

and CRM systems.

8. Testing and Quality Assurance (QA):

o Definition: Outline the testing procedures and criteria for ensuring the

website meets the defined requirements.

o Examples: Functional testing, usability testing, performance testing, and

security testing.

9. Deployment and Maintenance:

o Definition: Define the procedures for deploying the website and

maintaining it post-launch.

o Examples: Deployment strategy, hosting setup, update procedures, bug

fixes, and ongoing support.

10. Timeline and Milestones:

o Definition: Set the project timeline and key milestones to track progress.

o Examples: Project kick-off, design completion, development phases,

testing, and launch date.

11. Budget and Resources:

o Definition: Estimate the budget and resources required for the project.

o Examples: Development costs, design costs, software licenses, and team

members’ time.

12. Stakeholder Involvement:

o Definition: Identify who will be involved in the project and their roles.

o Examples: Project manager, developers, designers, content creators, and

clients.

Scope Management

1. Scope Definition:

o Activities: Document and define the project scope based on initial

requirements and objectives.

o Documents: Scope statement, requirements specification, and project

charter.

2. Scope Verification:

o Activities: Regularly review and verify that the project is aligning with the

defined scope.

o Techniques: Stakeholder meetings, status reports, and scope review

sessions.

3. Scope Control:

o Activities: Manage changes to the project scope and handle scope creep

(uncontrolled changes).

o Techniques: Change control process, impact analysis, and approval

workflows.

4. Scope Documentation:

o Activities: Maintain and update scope-related documents throughout the

project lifecycle.

o Documents: Change logs, updated scope statements, and revised project

plans.

Importance of Defining Scope

1. Clarity and Focus:

o Ensures that all team members and stakeholders have a clear

understanding of what the project will deliver.

2. Resource Management:

o Helps allocate resources effectively and avoid overuse or misallocation.

3. Budget Control:

o Provides a basis for budgeting and helps prevent cost overruns by

defining the project boundaries.

4. Timeline Management:

o Assists in creating a realistic timeline and scheduling tasks to meet

deadlines.

5. Risk Management:

o Identifies potential risks related to scope changes and helps mitigate

them.

6. Quality Assurance:

o Ensures that the final product meets the defined requirements and

quality standards.

Scripting languages JavaScript and PHP

JavaScript and PHP are both popular scripting languages used in web development,

but they serve different purposes and operate in different environments. Here's a

comparative overview of both languages:

JavaScript

Overview:

• Type: Client-side scripting language (can also be used server-side with Node.js).

• Usage: Primarily used for adding interactivity and dynamic content to websites.

JavaScript runs in the user's browser, allowing for real-time updates and

interaction without requiring a page reload.

Key Features:

• Interactivity: Enables dynamic updates to web pages (e.g., form validation,

animations, interactive maps).

• Event Handling: Responds to user actions such as clicks, hover, and keyboard

inputs.

• DOM Manipulation: Allows modification of HTML and CSS elements on the fly

through the Document Object Model (DOM).

• Asynchronous Programming: Supports asynchronous operations with callbacks,

promises, and async/await, making it ideal for handling operations like API calls

and timers.

• Frameworks/Libraries: Popular frameworks and libraries include React,

Angular, Vue.js, and jQuery.

Syntax and Examples:

• Variables:

javascript

Copy code

let name = 'John';

const age = 30;

• Function:

javascript

Copy code

function greet(name) {

 return `Hello, ${name}!`;

}

• DOM Manipulation:

javascript

Copy code

document.getElementById('myElement').innerText = 'Updated Text';

Strengths:

• Performance: Executes directly in the browser, providing immediate feedback

and interactivity.

• Ecosystem: Rich ecosystem with numerous libraries and frameworks for

various functionalities.

• Versatility: Can be used on both the client and server sides (Node.js).

Weaknesses:

• Browser Compatibility: Differences in how browsers interpret JavaScript can

lead to inconsistencies.

• Security: JavaScript code is visible to users, which can potentially expose

vulnerabilities.

PHP

Overview:

• Type: Server-side scripting language.

• Usage: Primarily used for server-side development, generating dynamic content

on the server and delivering it to the client. PHP code is executed on the server

before the web page is sent to the browser.

Key Features:

• Server-Side Processing: Handles tasks like form submissions, database

interactions, and user authentication.

• Integration with Databases: Often used in conjunction with databases like

MySQL or PostgreSQL to manage and retrieve data.

• Session Management: Supports session handling for maintaining user state

across multiple pages.

• File Handling: Provides functionality for file uploads, downloads, and

manipulation on the server.

Syntax and Examples:

• Variables:

php

Copy code

$name = 'John';

$age = 30;

• Function:

php

Copy code

function greet($name) {

 return "Hello, $name!";

}

• Database Connection:

php

Copy code

$conn = new mysqli('localhost', 'username', 'password', 'database');

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

Strengths:

• Server-Side Capabilities: Efficient at handling server-side operations and

integrating with databases.

• Ease of Use: Generally considered easy to learn and use for building dynamic

websites.

• Wide Hosting Support: Supported by most web hosting providers and compatible

with various database systems.

Weaknesses:

• Performance: Can be slower compared to some modern server-side languages

due to its synchronous nature.

• Security: Security practices must be carefully followed to prevent vulnerabilities

such as SQL injection and cross-site scripting (XSS).

Comparison:

Feature JavaScript PHP

Execution Client-side (browser) and server-

side (Node.js)

Server-side

Primary Use Interactivity and dynamic content Server-side processing and data

management

Syntax Similar to other C-style

languages

Unique syntax with a focus on

server-side scripting

Performance Fast client-side operations Depends on server and execution

environment

Ecosystem Extensive libraries and

frameworks (React, Angular, etc.)

Mature frameworks (Laravel,

Symfony)

Security Can be vulnerable if not properly

handled

Requires attention to avoid

server-side vulnerabilities

Summary

• JavaScript is essential for creating interactive and dynamic user experiences on

the client side, with a growing presence on the server side thanks to Node.js.

• PHP is widely used for server-side scripting, handling backend operations,

database interactions, and generating dynamic web content.

Web hosting

Web hosting refers to the service that allows individuals and organizations to publish a

website or web application on the internet. Web hosting provides the infrastructure and

resources needed to store and serve website files, such as HTML, CSS, JavaScript,

images, and databases.

Key Concepts in Web Hosting

1. Types of Web Hosting:

o Shared Hosting: Multiple websites share the same server resources

(CPU, RAM, storage). It is cost-effective but can have limitations in

performance and customization.

o Virtual Private Server (VPS) Hosting: A physical server is divided into

multiple virtual servers. Each VPS has its own dedicated resources and

more control compared to shared hosting.

o Dedicated Hosting: The entire server is dedicated to a single website or

client. It offers maximum control, performance, and security but is more

expensive.

o Cloud Hosting: Uses a network of interconnected virtual servers. It offers

scalability, reliability, and flexibility, as resources can be scaled up or

down based on demand.

o Managed Hosting: The hosting provider manages the server and its

infrastructure, including updates, security, and backups. This can be

applied to shared, VPS, or dedicated hosting.

o Reseller Hosting: Allows individuals or businesses to resell hosting

services to others. Resellers manage their own customer accounts but

use the resources provided by the primary hosting provider.

o WordPress Hosting: Optimized specifically for WordPress sites, including

features like automatic updates, backups, and WordPress-specific

support.

2. Key Components of Web Hosting:

o Domain Name: The address of the website (e.g., www.example.com).

Domain names need to be registered and linked to the hosting service.

o Server: The physical or virtual machine where website files and data are

stored. Servers can be managed by the hosting provider or by the client

(in the case of dedicated or VPS hosting).

o Storage: Space on the server where website files, databases, and other

content are stored.

o Bandwidth: The amount of data transferred between the server and

users. Hosting plans usually come with a certain amount of bandwidth,

and exceeding this can result in additional charges or throttling.

o Email Accounts: Many hosting plans include email services, allowing

users to create custom email addresses associated with their domain

(e.g., info@example.com).

o Control Panel: A web-based interface for managing hosting features,

such as file uploads, email accounts, databases, and domain settings.

Common control panels include cPanel, Plesk, and custom dashboards

provided by the hosting provider.

3. Key Features to Consider:

o Uptime Guarantee: The percentage of time the hosting service is

operational. A high uptime guarantee (e.g., 99.9%) is crucial for ensuring

your website is available to users.

o Security: Features like SSL certificates, firewalls, malware scanning, and

backups to protect your website from threats and ensure data integrity.

o Performance: Factors like server speed, load times, and resource

allocation impact how quickly and efficiently your website loads for

users.

o Customer Support: Availability of support channels (e.g., phone, chat,

email) and the quality of assistance provided by the hosting provider.

o Scalability: The ability to upgrade resources (e.g., storage, bandwidth) as

your website grows or experiences increased traffic.

o Backup and Recovery: Regular backups and recovery options to protect

against data loss and ensure quick restoration in case of issues.

4. Popular Web Hosting Providers:

o Bluehost: Known for WordPress hosting and reliable customer support.

o HostGator: Offers a variety of hosting options, including shared, VPS, and

dedicated hosting.

o SiteGround: Known for its performance and customer support, with

strong WordPress hosting options.

o Amazon Web Services (AWS): Provides cloud hosting with extensive

scalability and flexibility.

o Google Cloud Platform (GCP): Offers cloud hosting with robust

infrastructure and global reach.

o DigitalOcean: Provides cloud hosting with a focus on simplicity and

developer-friendly features.

Cookie

Cookies are small pieces of data that are stored on a user's device by a web browser

while they are browsing a website. They serve various purposes, such as maintaining

user sessions, tracking user behavior, and personalizing web content.

Types of Cookies

1. Session Cookies:

o Definition: Temporary cookies that are deleted when the browser is

closed.

o Purpose: Used to store information during a browsing session, such as

keeping a user logged in or remembering items in a shopping cart.

2. Persistent Cookies:

o Definition: Cookies that remain on the user's device for a specified period,

even after the browser is closed.

o Purpose: Used to remember login information, user preferences, or

tracking information across multiple sessions.

3. First-Party Cookies:

o Definition: Cookies set by the website that the user is currently visiting.

o Purpose: Used to store information related to the website, such as user

preferences and session data.

4. Third-Party Cookies:

o Definition: Cookies set by domains other than the one the user is visiting,

typically by third-party advertisers or analytics providers.

o Purpose: Used for tracking user behavior across different websites,

serving targeted ads, and collecting analytics data.

5. Secure Cookies:

o Definition: Cookies that are only transmitted over secure (HTTPS)

connections.

o Purpose: Used to enhance security by ensuring that cookie data is

encrypted during transmission.

6. HttpOnly Cookies:

o Definition: Cookies that are not accessible via JavaScript and can only be

used by the server.

o Purpose: Used to help prevent cross-site scripting (XSS) attacks by

reducing the risk of cookie theft through client-side scripts.

7. SameSite Cookies:

o Definition: Cookies that have a SameSite attribute which controls how

cookies are sent with cross-site requests.

o Purpose: Provides additional security by restricting how cookies are sent

in cross-site requests. The SameSite attribute can be set to Strict, Lax, or

None.

Key Functions of Cookies

1. Session Management:

o Purpose: Keeps users logged in and manages their session state. For

example, cookies are used to store session identifiers for authenticated

users.

2. Personalization:

o Purpose: Remembers user preferences and settings to provide a

personalized experience. For example, storing language preferences or

theme choices.

3. Tracking and Analytics:

o Purpose: Tracks user behavior and collects data for analytics. For

example, cookies can track page visits, time spent on a site, and user

interactions.

4. Advertising:

o Purpose: Delivers targeted ads based on user behavior and interests. For

example, cookies can track users' browsing history to display relevant

advertisements.

Managing Cookies

1. Creating Cookies:

o Example (JavaScript):

javascript

Copy code

document.cookie = "username=JohnDoe; expires=Fri, 31 Dec 2024 23:59:59 GMT; path=/";

2. Reading Cookies:

o Example (JavaScript):

javascript

Copy code

const cookies = document.cookie.split('; ');

const cookie = cookies.find(row => row.startsWith('username='));

const username = cookie ? cookie.split('=')[1] : null;

3. Deleting Cookies:

o Example (JavaScript):

javascript

Copy code

document.cookie = "username=; expires=Thu, 01 Jan 1970 00:00:00 GMT; path=/";

4. Browser Settings:

o Users can manage cookies through their browser settings, including

deleting cookies, blocking cookies from specific sites, or setting

preferences for cookie handling.

Privacy and Security

1. Privacy Concerns:

o Cookies can be used to track user behavior, which raises privacy

concerns. Users can manage cookie settings and preferences to control

how cookies are used.

2. Regulations:

o Various regulations, such as the General Data Protection Regulation

(GDPR) and the California Consumer Privacy Act (CCPA), require websites

to obtain user consent before storing cookies and to provide

transparency about cookie usage.

3. Security Measures:

o Secure Attribute: Ensures cookies are only sent over secure connections.

o HttpOnly Attribute: Helps protect cookies from being accessed by

JavaScript.

o SameSite Attribute: Helps mitigate cross-site request forgery (CSRF)

attacks.

HTML
What is HTML

HTML is an acronym which stands for Hyper Text Markup Language which is used for

creating web pages and web applications. Let's see what is meant by Hypertext Markup

Language, and Web page.

Hyper Text: Hypertext simply means "Text within Text." A text has a link within it, is a

hypertext. Whenever you click on a link which brings you to a new webpage, you have

clicked on a hypertext. Hypertext is a way to link two or more web pages (HTML

documents) with each other.

Markup language: A markup language is a computer language that is used to apply

layout and formatting conventions to a text document. Markup language makes text

more interactive and dynamic. It can turn text into images, tables, links, etc.

Web Page: A web page is a document which is commonly written in HTML and

translated by a web browser. A web page can be identified by entering an URL. A Web

page can be of the static or dynamic type. With the help of HTML only, we can create

static web pages.

Hence, HTML is a markup language which is used for creating attractive web pages

with the help of styling, and which looks in a nice format on a web browser. An HTML

document is made of many HTML tags and each HTML tag contains different content.

HTML Versions

Since the time HTML was invented, there are lots of HTML versions in market, the brief

introduction about the HTML version is given below:

HTML 1.0: The first version of HTML was 1.0, which was the barebones version of HTML

language, and it was released in1991.

HTML 2.0: This was the next version which was released in 1995, and it was standard

language version for website design. HTML 2.0 was able to support extra features such

as form-based file upload, form elements such as text box, option button, etc.

HTML 3.2: HTML 3.2 version was published by W3C in early 1997. This version was

capable of creating tables and providing support for extra options for form elements. It

can also support a web page with complex mathematical equations. It became an

official standard for any browser till January 1997. Today it is practically supported by

most of the browsers.

HTML 4.01: HTML 4.01 version was released on December 1999, and it is a very stable

version of HTML language. This version is the current official standard, and it provides

added support for stylesheets (CSS) and scripting ability for various multimedia

elements.

HTML5: HTML5 is the newest version of HyperText Markup language. The first draft of

this version was announced in January 2008. There are two major organizations one is

W3C (World Wide Web Consortium), and another one is WHATWG(Web Hypertext

Application Technology Working Group) which are involved in the development of HTML

5 version, and still, it is under development.

Features of HTML

1) It is a very easy and simple language. It can be easily understood and modified.

2) It is very easy to make an effective presentation with HTML because it has a lot

of formatting tags.

3) It is a markup language, so it provides a flexible way to design web pages along

with the text.

4) It facilitates programmers to add a link on the web pages (by html anchor tag),

so it enhances the interest of browsing of the user.

5) It is platform-independent because it can be displayed on any platform like

Windows, Linux, and Macintosh, etc.

6) It facilitates the programmer to add Graphics, Videos, and Sound to the web

pages which makes it more attractive and interactive.

7) HTML is a case-insensitive language, which means we can use tags either in

lower-case or upper-case.

HTML Code Editors and Execution of HTML Program

An HTML file is a text file, so to create an HTML file we can use any text editors as code editor.

1) Text editors are the programs which allow editing in a written text, hence to create a web page

we need to write our code in some text editor.

2) There are various types of text editors available which you can directly download, but for a

beginner, the best text editor is Notepad (Windows) or TextEdit (Mac).

3) After learning the basics, you can easily use other professional text editors which are,

a. Notepad++

b. Sublime Text

c. Vim

d. VS-Code

HTML Program Execution can be carried out by using any web browser program.

Google Chrome

Mozilla Firefox

Opera Web Browser

Safari Web Browser

Internet Explorer

Slim jet Browser

Maxthon

Slim Browser

Netscape Browser

HTML Program Structure

Most Important Tags Used in Every Html Program Are

Listed Below.

<!DOCTYPE>:

It defines the document type or it instruct the

browser about the version of HTML.

<html > And </html>

This tag informs the browser that it is an HTML

document. Text between html tag describes the web

document. It is a container for all other elements of

HTML except <!DOCTYPE>

<head> And </head> (Optional TAG)

It should be the first element inside the <html> element, which contains the metadata

(information about the document). It must be closed before the body tag opens.

<title> And </title> (Optional TAG)

As its name suggested, it is used to add title of that HTML page which appears at the

top of the browser window. It must be placed inside the head tag and should close

immediately.

<meta> tag(Optional TAG)

HTML <meta> tag is used to represent the metadata about the HTML document. It

specifies page description, keywords, copyright, language, author of the documents,

etc.

The metadata does not display on the webpage, but it is used by search engines,

browsers and other web services which scan the site or webpage to know about the

webpage.

With the help of meta tag, you can experiment and preview that how your webpage will

render on the browser.

The <meta> tag is placed within the <head> tag, and it can be used more than one times

in a document.

Syntax and Explanation of Meta TAG

1. <meta charset="utf-8">

It defines the character encoding. The value of charset is "utf-8" which means it will

support to display any language.

2. <meta name="keywords" content="HTML, CSS, JavaScript, By Sir Azeem">

It specifies the list of keyword which is used by search engines.

3. <meta name="description" content="Free Online tutorials">

It defines the website description which is useful to provide relevant search performed

by search engines.

4. <meta name="author" content="Sardar Azeem">

It specifies the author of the page. It is useful to extract author information by Content

management system automatically.

5. <meta name="refresh" content="50">

It specifies to provide instruction to the browser to

automatically refresh the content after every

50sec (or any given time).

<body> and </body>

Body tag contains everything you want to display

on the Web Page. In other words the whole code of

the webpage is written between <body> and

</body>. So, we can say that body is an essential tag of every HTML program.

Example 1

<!DOCTYPE html>

<html>

How To Type, Save and Execute

1. Type Same Code using notepad.

2. click file then save

3. type filename as (first.html)

4. save on desktop

5. double click to execute

 <head>

 <title>Learn HTML From Sardar Azeem</title>

 </head>

 <body>

 <h1>HTML Program Structure</h1>

 <p>Learn HTML With Examples and 100% Practical</p>

 <p style="color: red">Welcome to Website Development Course</p>

 </body> </html>

Example 2

HTML 4 Example Program HTML 5 Example Program
<html>
<! -- Defines languages of content: English -->
<head>
<! -- Information about website and creator -->
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible"
content="IE=edge" />
<! -- Defines the compatibility of version with browser
-->
 <meta
 name="viewport"
 content="width=device-width,
 initial-scale=1.0"
 />
<! -- for make website responsive -->
 <meta name="author" content="SardarAzeem" />
 <meta
 name="LinkedIn profile"
 content="WWW.linkedin.com/SardarAzeem"
 />
<! -- To give information about author or owner -->
 <meta
 name="description "
 content="This is An Educational institute PICT"
 />
<! -- to explain about website in few words -->
 <title>Learn From The Experts</title>
<! -- Name of website or content to display -->
</head>
<body>
<! -- Main content of website -->
<h1>Hello World!!!</h1>
<p>Welcome to Website Development </p>
</body>
</html>

<!DOCTYPE html>
<! -- Defines types of documents : Html 5.O -->
<html lang="en">
<! -- Defines languages of content: English -->
<head>
<! -- Information about website and creator -->
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible"
content="IE=edge" />
<! -- Defines the compatibility of version with browser
-->
 <meta
 name="viewport"
 content="width=device-width,
 initial-scale=1.0"
 />
<! -- for make website responsive -->
 <meta name="author" content="SardarAzeem" />
 <meta
 name="LinkedIn profile"
 content="WWW.linkedin.com/SardarAzeem"
 />
<! -- To give information about author or owner -->
 <meta
 name="description "
 content="This is An Educational institute PICT"
 />
<! -- to explain about website in few words -->
 <title>Learn from The Experts</title>
<! -- Name of website or content to display -->
</head>
<body>
<! -- Main content of website -->
<h1>Hello World!!!</h1>
<p>Welcome to Website Development </p>
</body>
</html>

HTML Tags

HTML tags are like keywords which defines that how web browser will format and

display the content. With the help of tags, a web browser can distinguish between an

HTML content and a simple content. HTML tags contain three main parts

1. opening tag

2. content

3. closing tag.

But some HTML tags are unclosed tags. (e.g.
, <hr>)

All HTML tags must be enclosed within < > these brackets.

Every tag in HTML performs different tasks.

Syntax

<tag> content </tag>

Unclosed HTML Tags

Some HTML tags are not closed, for example br and hr.

 Tag: br stands for break line, it breaks the line of the code.

<hr> Tag: hr stands for Horizontal Rule. This tag is used to put a line across the

webpage.

HTML Meta Tags

DOCTYPE, title, link, meta and style

HTML Text Tags

<p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, , , <abbr>, <acronym>, <address>,

<bdo>, <blockquote>, <cite>, <q>, <code>, <ins>, , <dfn>, <kbd>, <pre>, <samp>, <var>

and

HTML Link Tags

<a> and <base>

HTML Image and Object Tags

, <area>, <map>, <param> and <object>

HTML List Tags

Example Syntax
 Azeem
Tag
Opening

Content of
Tag

Tag
Closing

, , , <dl>, <dt> and <dd>

HTML Table Tags

table, tr, td, th, tbody, thead, tfoot, col, colgroup and caption

HTML Form Tags

form, input, textarea, select, option, optgroup, button, label, fieldset and legend

HTML Scripting Tags

script and no script

HTML Attribute

HTML attributes are special words which provide additional information about the

elements or attributes are the modifier of the HTML element.

1. Each element or tag can have attributes, which defines the behavior of that

element.

2. Attributes should always be applied with start tag.

3. The Attribute should always be applied with its name and value pair.

4. The Attributes name and values are case sensitive

5. You can add multiple attributes in one HTML element, but need to give space

between two attributes.

Syntax

<element attribute name="value">content</element>

e.g. <body bgcolor=”cyan”></body>

Attribute list

Attribute
Name

Elements Description

accept <form>, <input> List of types the server accepts, typically a
file type.

accept-
charset

<form> List of supported charsets.

accesskey Global attribute Keyboard shortcut to activate or add focus to
the element.

action <form> The URI of a program that processes the
information submitted via the form.

align Deprec
ated

<caption>, <col>, <colgroup>, <hr>, <ifra
me>, , <table>, <tbody>, <td>, <tfoot
>, <th>, <thead>, <tr>

Specifies the horizontal alignment of the
element.

allow <iframe> Specifies a feature-policy for the iframe.

alt <area>, , <input> Alternative text in case an image can't be
displayed.

as <link> Specifies the type of content being loaded by
the link.

async <script> Executes the script asynchronously.

autocapitali
ze

Global attribute Sets whether input is automatically
capitalized when entered by user

autocomplet
e

<form>, <input>, <select>, <textarea> Indicates whether controls in this form can
by default have their values automatically
completed by the browser.

autoplay <audio>, <video> The audio or video should play as soon as
possible.

background <body>, <table>, <td>, <th> Specifies the URL of an image file.

bgcolor <body>, <col>, <colgroup>, <marquee>, <
table>, <tbody>, <tfoot>, <td>, <th>, <tr>

Background color of the element.

border , <object>, <table> The border width.

capture <input> From the Media Capture specification,
specifies a new file can be captured.

charset <meta> Declares the character encoding of the page
or script.

checked <input> Indicates whether the element should be
checked on page load.

cite <blockquote>, , <ins>, <q> Contains a URI which points to the source of
the quote or change.

class Global attribute Often used with CSS to style elements with
common properties.

color , <hr> This attribute sets the text color using either
a named color or a color specified in the
hexadecimal #RRGGBB format.

cols <textarea> Defines the number of columns in a textarea.

colspan <td>, <th> The colspan attribute defines the number of
columns a cell should span.

content <meta> A value associated with http-
equiv or name depending on the context.

contentedita
ble

Global attribute Indicates whether the element's content is
editable.

controls <audio>, <video> Indicates whether the browser should show
playback controls to the user.

coords <area> A set of values specifying the coordinates of
the hot-spot region.

crossorigin <audio>, , <link>, <script>, <video> How the element handles cross-origin
requests

csp Experim
ental

<iframe> Specifies the Content Security Policy that an
embedded document must agree to enforce
upon itself.

data <object> Specifies the URL of the resource.

data-* Global attribute Lets you attach custom attributes to an HTML
element.

datetime , <ins>, <time> Indicates the date and time associated with
the element.

decoding Indicates the preferred method to decode the
image.

default <track> Indicates that the track should be enabled
unless the user's preferences indicate
something different.

defer <script> Indicates that the script should be executed
after the page has been parsed.

dir Global attribute Defines the text direction. Allowed values are
ltr (Left-To-Right) or rtl (Right-To-Left)

dirname <input>, <textarea>

disabled <button>, <fieldset>, <input>, <optgroup>
, <option>, <select>, <textarea>

Indicates whether the user can interact with
the element.

download <a>, <area> Indicates that the hyperlink is to be used for
downloading a resource.

draggable Global attribute Defines whether the element can be dragged.

enctype <form> Defines the content type of the form data
when the method is POST.

enterkeyhint
 Experiment
al

<textarea>, contenteditable The enterkeyhint specifies what action label
(or icon) to present for the enter key on
virtual keyboards. The attribute can be used
with form controls (such as the value
of textarea elements), or in elements in an
editing host (e.g.,
using contenteditable attribute).

for <label>, <output> Describes elements which belongs to this
one.

form <button>, <fieldset>, <input>, <label>, <m
eter>, <object>, <output>, <progress>, <s
elect>, <textarea>

Indicates the form that is the owner of the
element.

formaction <input>, <button> Indicates the action of the element, overriding
the action defined in the <form>.

formenctype <button>, <input> If the button/input is a submit
button (e.g. type="submit"), this attribute sets
the encoding type to use during form
submission. If this attribute is specified, it
overrides the enctype attribute of the
button's form owner.

formmethod <button>, <input> If the button/input is a submit
button (e.g. type="submit"), this attribute sets
the submission method to use during form
submission (GET, POST, etc.). If this attribute
is specified, it overrides the method attribute
of the button's form owner.

formnovalid
ate

<button>, <input> If the button/input is a submit
button (e.g. type="submit"), this boolean
attribute specifies that the form is not to be
validated when it is submitted. If this attribute
is specified, it overrides
the novalidate attribute of the
button's form owner.

formtarget <button>, <input> If the button/input is a submit
button (e.g. type="submit"), this attribute

specifies the browsing context (for example,
tab, window, or inline frame) in which to
display the response that is received after
submitting the form. If this attribute is
specified, it overrides the target attribute of
the button's form owner.

headers <td>, <th> IDs of the <th> elements which applies to this
element.

height <canvas>, <embed>, <iframe>, , <in
put>, <object>, <video>

Specifies the height of elements listed here.
For all other elements, use the
CSS height property.
Note: In some instances, such as <div>, this is
a legacy attribute, in which case the
CSS height property should be used instead.

hidden Global attribute Prevents rendering of given element, while
keeping child elements, e.g. script elements,
active.

high <meter> Indicates the lower bound of the upper range.

href <a>, <area>, <base>, <link> The URL of a linked resource.

hreflang <a>, <link> Specifies the language of the linked resource.

http-equiv <meta> Defines a pragma directive.

id Global attribute Often used with CSS to style a specific
element. The value of this attribute must be
unique.

integrity <link>, <script> Specifies a Subresource Integrity value that
allows browsers to verify what they fetch.

intrinsicsize
 Deprecated

 This attribute tells the browser to ignore the
actual intrinsic size of the image and pretend
it's the size specified in the attribute.

inputmode <textarea>, contenteditable Provides a hint as to the type of data that
might be entered by the user while editing
the element or its contents. The attribute can
be used with form controls (such as the value
of textarea elements), or in elements in an
editing host (e.g.,
using contenteditable attribute).

ismap Indicates that the image is part of a server-
side image map.

itemprop Global attribute

kind <track> Specifies the kind of text track.

label <optgroup>, <option>, <track> Specifies a user-readable title of the
element.

lang Global attribute Defines the language used in the element.

language De
precated

<script> Defines the script language used in the
element.

loading Exp
erimental

, <iframe> Indicates if the element should be loaded
lazily (loading="lazy") or loaded immediately
(loading="eager").

list <input> Identifies a list of pre-defined options to
suggest to the user.

loop <audio>, <marquee>, <video> Indicates whether the media should start
playing from the start when it's finished.

low <meter> Indicates the upper bound of the lower range.

manifest De
precated

<html> Specifies the URL of the document's cache
manifest.
Note: This attribute is obsolete, use <link
rel="manifest"> instead.

max <input>, <meter>, <progress> Indicates the maximum value allowed.

maxlength <input>, <textarea> Defines the maximum number of characters
allowed in the element.

minlength <input>, <textarea> Defines the minimum number of characters
allowed in the element.

media <a>, <area>, <link>, <source>, <style> Specifies a hint of the media for which the
linked resource was designed.

method <form> Defines which HTTP method to use when
submitting the form. Can be GET (default)
or POST.

min <input>, <meter> Indicates the minimum value allowed.

multiple <input>, <select> Indicates whether multiple values can be
entered in an input of the type email or file.

muted <audio>, <video> Indicates whether the audio will be initially
silenced on page load.

name <button>, <form>, <fieldset>, <iframe>, <i
nput>, <object>, <output>, <select>, <text
area>, <map>, <meta>, <param>

Name of the element. For example used by
the server to identify the fields in form
submits.

novalidate <form> This attribute indicates that the form
shouldn't be validated when submitted.

open <details>, <dialog> Indicates whether the contents are currently
visible (in the case of a <details> element) or
whether the dialog is active and can be
interacted with (in the case of
a <dialog> element).

optimum <meter> Indicates the optimal numeric value.

pattern <input> Defines a regular expression which the
element's value will be validated against.

ping <a>, <area> The ping attribute specifies a space-
separated list of URLs to be notified if a user
follows the hyperlink.

placeholder <input>, <textarea> Provides a hint to the user of what can be
entered in the field.

playsinline <video> A Boolean attribute indicating that the video
is to be played "inline"; that is, within the
element's playback area. Note that the
absence of this attribute does not imply that
the video will always be played in fullscreen.

poster <video> A URL indicating a poster frame to show until
the user plays or seeks.

preload <audio>, <video> Indicates whether the whole resource, parts
of it or nothing should be preloaded.

readonly <input>, <textarea> Indicates whether the element can be edited.

referrerpoli
cy

<a>, <area>, <iframe>, , <link>, <scr
ipt>

Specifies which referrer is sent when
fetching the resource.

rel <a>, <area>, <link> Specifies the relationship of the target object
to the link object.

required <input>, <select>, <textarea> Indicates whether this element is required to
fill out or not.

reversed Indicates whether the list should be displayed
in a descending order instead of an
ascending order.

role Global attribute Defines an explicit role for an element for
use by assistive technologies.

rows <textarea> Defines the number of rows in a text area.

rowspan <td>, <th> Defines the number of rows a table cell
should span over.

sandbox <iframe> Stops a document loaded in an iframe from
using certain features (such as submitting
forms or opening new windows).

scope <th> Defines the cells that the header test (defined
in the th element) relates to.

scoped Non
-
standard De
precated

<style>

selected <option> Defines a value which will be selected on
page load.

shape <a>, <area>

size <input>, <select> Defines the width of the element (in pixels). If
the element's type attribute
is text or password then it's the number of
characters.

sizes <link>, , <source>

slot Global attribute Assigns a slot in a shadow DOM shadow tree
to an element.

span <col>, <colgroup>

spellcheck Global attribute Indicates whether spell checking is allowed
for the element.

src <audio>, <embed>, <iframe>, , <inp
ut>, <script>, <source>, <track>, <video>

The URL of the embeddable content.

srcdoc <iframe>

srclang <track>

srcset , <source> One or more responsive image candidates.

start Defines the first number if other than 1.

step <input>

style Global attribute Defines CSS styles which will override styles
previously set.

Attributes Of Body TAG in HTML

HTML body tag Contains three attributes

bgcolor

 Used to assign the background color to HTML webpage.

Syntax

Bgcolor=”color name” or “HEX code”

text

 Used to assign the text color to HTML webpage.

Syntax

text=”color name” or “HEX code”

background

 Used to set a picture or a wallpaper to the background color to HTML webpage.

summary D
eprecated

<table>

tabindex Global attribute Overrides the browser's default tab order and
follows the one specified instead.

target <a>, <area>, <base>, <form> Specifies where to open the linked document
(in the case of an <a> element) or where to
display the response received (in the case of
a <form> element)

title Global attribute Text to be displayed in a tooltip when
hovering over the element.

translate Global attribute Specify whether an element's attribute values
and the values of its Text node children are to
be translated when the page is localized, or
whether to leave them unchanged.

type <button>, <input>, <embed>, <object>, <o
l>, <script>, <source>, <style>, <menu>, <
link>

Defines the type of the element.

usemap , <input>, <object>

value <button>, <data>, <input>, , <meter>,
<option>, <progress>, <param>

Defines a default value which will be
displayed in the element on page load.

width <canvas>, <embed>, <iframe>, , <in
put>, <object>, <video>

For the elements listed here, this establishes
the element's width.
Note: For all other instances, such as <div>,
this is a legacy attribute, in which case the
CSS width property should be used instead.

wrap <textarea> Indicates whether the text should be
wrapped.

Syntax

Background=”URL”(universal resource locator)

Example 1(color with name) Example 2(color with HEX code)
<!DOCTYPE html>
<html>
<head><title>pict.com</title></head>
<body bgcolor="cyan" text="green">
<h1>Pict Computer College Abbottabad</h1>
<p>Welcome to website development Course</p>
</body>
</html>

<!DOCTYPE html>
<html>
<head><title>pict.com</title></head>
<body bgcolor="#B1FC2D " text="#BD12B8 ">
<h1>Pict Computer College Abbottabad</h1>
<p>Welcome to website development Course</p>
</body>
</html>

</html>
Example 3(setting an image background)

<!DOCTYPE html>
<html>
<head><title>pict.com</title></head>
<body text="#BD12B8 " background="E:\Wallpapers\Sardar (2).png">
<h1>Pict Computer College Abbottabad</h1>
<p>Welcome to website development Course</p>
</body>
</html>

HTML FONT tag and its attributes

HTML FONT tag is used to assign font color,size and font family to text written on a

webpage. FONT tag was an essential tag in HTML 4 but Now It has been excluded in

HTML 5.but still can be used.

Syntax

 any text

Attributes in font tag

Size

 Used to assign font size to given text.

Syntax size= 1 to 7

Color

 Used to apply any color to given text.

Syntax color=”Color name” or “HEX Code”

Face

 Used to apply any font family to given text

 Syntax face = ”Style Name”

Other Relevant TAGs for Font Formatting

Practical Demonstration Of All Of the above By Example

<!DOCTYPE html>
<html>
<head><title>pict.com</title></head>
<body>
Pict Computer College Yousaf Jamal Plaza Abbottabad
<hr>
Pict Computer College Yousaf Jamal Plaza Abbottabad
<hr>
Pict Computer College Yousaf Jamal Plaza
Abbottabad
<hr>

Element name/TAG name Description

 Any Text This is a physical tag, which is used to bold the
text written between it.

 Any Text This is a logical tag, which tells the browser that
the text is important.

<i> Any Text</i> This is a physical tag which is used to make text
italic.

 Any Text This is a logical tag which is used to display
content in italic.

<mark> Any Text</mark> This tag is used to highlight text.

<u> Any Text</u> This tag is used to underline text written between
it.

<tt> Any Text</tt> This tag is used to appear a text in teletype. (not
supported in HTML5)

<strike> Any Text</strike> This tag is used to draw a strikethrough on a
section of text. (Not supported in HTML5)

^{Any Text} It displays the content slightly above the normal
line.

_{Any Text} It displays the content slightly below the normal
line.

 Any Text This tag is used to display the deleted content.

<ins> Any Text</ins> This tag displays the content which is added

<big> Any Text</big> This tag is used to increase the font size by one
conventional unit.

<small>Any Text</small> This tag is used to decrease the font size by one
unit from base font size.

<center>Any TEXT</center> To Center align TEXT.

Pict Abbottabad
<hr>
Pict Abbottabad
<hr>
<i>Pict Abbottabad</i>
<hr>
Pict Abbottabad
<hr>
<u>Pict Abbottabad</u>
<hr>
<strike>Pict Abbottabad</strike>
<hr>
<center>Pict Abbottabad</center>
<hr>
<mark>Pict Abbottabad</mark>
<hr>
<big>Pict Abbottabad</big>
<hr>
<small>Pict Abbottabad</small>
<hr>
H₂O
<hr>
10⁵⁰
<hr>

<hr>
</body>

HTML Heading

A HTML heading or HTML h tag can be defined as a title or a subtitle which you want to

display on the webpage. When you place the text within the heading tags <h1>.........</h1>,

it is displayed on the browser in the bold format and size of the text depends on the

number of headings.

There are six different HTML headings which are defined with the <h1> to <h6> tags,

from highest level h1 (main heading) to the least level h6 (least important heading).

h1 is the largest heading tag and h6 is the smallest one. So h1 is used for most

important heading and h6 is used for least important.

Syntax

<h1>Sardar Azeem PICT Abbottabad</h1>

<h2> Sardar Azeem PICT Abbottabad </h2>

<h3> Sardar Azeem PICT Abbottabad </h3>

<h4> Sardar Azeem PICT Abbottabad </h4>

<h5> Sardar Azeem PICT Abbottabad </h5>

<h6> Sardar Azeem PICT Abbottabad </h6>

Sub tags/Attributes

1. Style

We can apply style attribute to any heading to apply font size/color/style/alignment

Syntax

<H1 Style=” property1: value1; property2: value2; ………………………………Property N: value N”>

Example 1(Without Attributes) Example 2(With Attributes)
<!DOCTYPE html>
<html>
<body>
<h1>SardarAzeem Pict Abbottabad KPK Pak</h1>
<h2> SardarAzeem Pict Abbottabad KPK Pak </h2>
<h3> SardarAzeem Pict Abbottabad KPK Pak </h3>
<h4> SardarAzeem Pict Abbottabad KPK Pak </h4>
<h5> SardarAzeem Pict Abbottabad KPK Pak </h5>
<h6> SardarAzeem Pict Abbottabad KPK Pak </h6>
</body>
</html>

<!DOCTYPE html>
<html>
<body>
<h1 title="This is heading tag"> SardarAzeem Pict
Abbottabad KPK Pak </h1>

 <h1 style="height: 50px; color: blue">

SardarAzeem Pict Abbottabad KPK Pak </h1>

 <h1 style="font-family: Verdana; color: blue;font-
size:50px"> SardarAzeem Pict Abbottabad KPK Pak

</h1>
</body>
</html>

HTML Paragraph

HTML paragraph or HTML p tag is used to define a paragraph in a webpage. An HTML

<p> tag indicates starting of new paragraph. </p> indicates closing of paragraph.HTML

paragraph is a block element. (i.e. every paragraph starts from new line)

Sub tags/Attributes

1. Style

We can apply style attribute to any heading to apply font size/color/style/alignment

Syntax

<P Style=”property1: value1;property2: value2; ………………………………Property N: value N”>

Example 1(Without Attributes) Example 2(With Attributes)
<!DOCTYPE html>
<html>
<body>
<p>This is first paragraph.</p>
<p>This is second paragraph.</p>
<p>This is third paragraph.</p>
</body>
</html>

<!DOCTYPE html>
<html>
<head>
</head>
<body>
 <h1> This is Style attribute</h1>
 <p style="height: 50px; color: blue">It will add
style property in element</p>
 <p style="color: red">It will change the color of
content</p>
</body>
</html>

HTML pre tag

The HTML <pre> tag is used to specify pre-formatted texts. Texts within <pre>.......</pre> tag is

displayed in a fixed-width font. Usually, it is displayed in Courier font. It maintains both space

and line break.

Example
<!DOCTYPE>
<html>
<body>
<pre>
Sardar Azeem
 PICT Computer College
 Abbottabad KPK Pakistan
 03135879331
</pre>
</body>
</html>

HTML Marquee/Anchor/Image Tags

HTML Marquee Tag

The Marquee HTML tag is a non-standard HTML element which is used to scroll a image or text

horizontally or vertically.

In simple words, you can say that it scrolls the image or text up, down, left or right

automatically.

Marquee tag was first introduced in early versions of Microsoft's Internet Explorer. It is

compared with Netscape's blink element.

Marquee tag has the following attributes.

Attribute Description

behavior It facilitates user to set the behavior of the marquee to one of the three
different types: scroll, slide and alternate.

direction defines direction for scrolling content. It may be left, right, up and down.

width defines width of marquee in pixels or %.

height defines height of marquee in pixels or %.

hspace defines horizontal space in pixels around the marquee.

vspace defines vertical space in pixels around the marquee.

scrolldelay defines scroll delay in seconds.

scrollamount defines scroll amount in number.

loop defines loop for marquee content in number.

bgcolor defines background color. It is now deprecated.

HTML Image TAG

HTML img tag is used to display image on the web page. HTML img tag is an empty tag

that contains attributes only, closing tags are not used in HTML image element.

Attributes of HTML img tag

The src and alt are important attributes of HTML img tag. All attributes of HTML image

tag are given below.

1) src=”URL”

It is a necessary attribute that

describes the source or path of the

image. It instructs the browser where to

look for the image on the server.

The location of image may be on the

same directory or another server.

2) alt

The alt attribute defines an alternate

text for the image, if it can't be

displayed. The value of the alt attribute

describe the image in words. The alt

attribute is considered good for SEO

prospective.

3) width=1 to 1000 px

It is an optional attribute which is used

to specify the width to display the

image. It is not recommended now. You

should apply CSS in place of width

attribute.

4) height=1 to 1000px

Used to add height of images. It is not

recommended now. You should apply

CSS in place of height attribute.

5) Border=1 to 10px

Used to apply border to images

HTML Anchor TAG

The HTML anchor tag defines a hyperlink that links one page to another page. It can

create hyperlink to other web page as well as files, location, or any URL. The "href"

attribute is the most important attribute of the HTML a tag. and which links to

destination page or URL.

href attribute of HTML anchor tag

The href attribute is used to define the

address of the file to be linked. In other

words, it points out the destination

page.

The syntax of HTML anchor tag

 Link Text

Example Of Using Marquee/Image/Anchor Tags
<html>
<body>
<marquee bgcolor="black" direction="left" behaviour="scroll" delay=300>
Pict Computer College Yousaf Jamal Plaza Abbottabad

 </marquee>
<hr>

<marquee bgcolor="red" direction="right" behaviour="slide" delay=300>
Pict Computer College Yousaf Jamal Plaza
Abbottabad

 </marquee>

<marquee bgcolor="yellow" direction="up" behaviour="alternate" delay=300 width=300px height=300px>
What is Lorem Ipsum?
Our mission is to eliminate social abuses, unemployment and poverty through the technical education.Using the
modern and sophisticated sources of IT, the institute is busy in providing all the possible resources of technical

education and developing technical skills in our students</marquee>
<hr>

<marquee bgcolor="yellow" direction="down" behaviour="alternate" delay=300 width=300px
height=300px>
What is Lorem Ipsum?
To make sure that the professional computer training must be provided with all available resources of modern
technology, because the city of Abbottabad is known by the people as the CITY OF SCHOOLS &COLLEGES.
The technical education is assured to be provided with 100 per cent of the result orientation.
So as to make the standard of living of each & every citizen with a positive approach

 </marquee>
<hr>

<img src="E:\Wallpapers\bomarzo-park-of-the-monsters-best-destinations-for-halloween-in-
europe-copyright-canadastock.jpg" width=500px height=300px border=5 align=center>

<hr>

<marquee>
<img src="E:\Wallpapers\bomarzo-park-of-the-monsters-best-destinations-for-halloween-in-
europe-copyright-canadastock.jpg" width=500px height=300px border=5 align=center>

</marquee>
Home Page
Home Page
Home Page
</body></html>

HTML List TAGS(OL/UL/MENU/DL/SELECT)

HTML Lists are used to specify lists of information. All lists may contain one or more

list elements. There are Following types of HTML lists:

1) Ordered List or Numbered List (ol)

2) Unordered List or Bulleted List (ul)

3) Menu List

4) Description List or Definition List (dl)

5) Select List

HTML Ordered List | HTML Numbered List

HTML Ordered List or Numbered List displays elements in numbered format. The HTML

ol tag is used for ordered list. There can be different types of numbered list:

HTML Unordered List | HTML Bulleted List

HTML Unordered List or Bulleted List displays elements in bulleted format . We can

use unordered list where we do not need to display items in any particular order. The

HTML ul tag is used for the unordered list. There can be 4 types of bulleted list:

HTML <menu> tag

HTML <menu> tag specifies a list or menu of commands that a user can perform or

activate. It is used for creating context menu as well as lists menu.

A <menu> element can contain one or more or <menuitem> elements within it.

Syntax

Type Description
Type "1" This is the default type. In this type, the list items are numbered

with numbers.
Type "I" In this type, the list items are numbered with upper case roman

numbers.
Type "i" In this type, the list items are numbered with lower case roman

numbers.
Type "A" In this type, the list items are numbered with upper case letters.
Type "a" In this type, the list items are numbered with lower case letters.

Type Description
"disc"/”fillround” This is the default style. In this style, the list items are

marked with bullets.
"circle" In this style, the list items are marked with circles.
"square" In this style, the list items are marked with squares.
"none" In this style, the list items are not marked.

<menu>........</menu>

HTML Description List | HTML Definition List

HTML Description List or Definition List displays elements in definition form like in

dictionary. The <dl>, <dt> and <dd> tags are used to define description list.

The 3 HTML description list tags are given below:

<dl> tag defines the description list.

<dt> tag defines data term.

<dd> tag defines data definition (description).

Select Tag in HTML

In HTML, with the help of a select tag, we can create the dropdown list while creating

the form where the user can choose one of the options from the given option. If the

developer allows the user, then the user also selects multiple options from the given

option. We can implement the select tag only inside the HTML form. We can preserve

the space by choosing the dropdown menu while accepting the information from the

users.

Syntax

<select>........</select>

Example 1 Example 2
<!DOCTYPE html>
<html>
<body>
 <ol type=1>
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

<hr>
<ol type=A>
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

<hr>
<ol type=a>
Saturday

<!DOCTYPE html>
<html>
<head>
 <title>T-Shirt Color Selection</title>
 <style>
 body {
 font-family: Arial, sans-serif;
 background-color: #f2f2f2;
 }

 label {
 font-size: 18px;
 font-weight: bold;
 color: #333;
 }

 select {
 font-size: 16px;
 padding: 8px;
 margin: 5px 0;
 border: 1px solid #ccc;
 border-radius: 5px;
 width: 200px;

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

<hr>
<ol type=I>
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

<hr>
<ol type=i>
Saturday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

<hr>
<ul type=”disk”>
DIT
CIT
Office Automation
Computer Hardware
Computer Networking
Website Development
E-Commerce MGMT

<hr>
<ul type=”circle”>
DIT
CIT
Office Automation
Computer Hardware
Computer Networking
Website Development
E-Commerce MGMT

<hr>
<ul type=”square”>
DIT
CIT
Office Automation
Computer Hardware
Computer Networking
Website Development
E-Commerce MGMT

<hr>
<menu

 background-color: #fff;
 color: #555;
 }

 option {
 color: #555;
 }
 </style>
</head>
<body>
 <label for="shirt-colors">What color t-
shirt would you like?</label>

 <select name="shirts" id="shirt-colors">
 <option value="red">Red t-shirt</option>
 <option value="blue">Blue t-shirt</option>
 <option value="orange">Orange t-shirt</option>
 </select>
<hr>
<dl>
 <dt>HTML</dt>
 <dd>is a markup language</dd>
 <dt>Java</dt>
 <dd>is a programming language and platform</dd>
 <dt>JavaScript</dt>
 <dd>is a scripting language</dd>
 <dt>SQL</dt>
 <dd>is a query language</dd>
</dl>

</body>
</html>

HTML Table TAG

HTML table tag is used to display data in tabular form (row * column). There can be many

columns in a row.

We can create a table to display data in tabular form, using <table> element, with the help of

<tr> , <td>, and <th> elements.

In Each table, table row is defined by <tr> tag, table header is defined by <th>, and table data is

defined by <td> tags.

HTML tables are used to manage the layout of the page e.g. header section, navigation bar,

body content, footer section etc. But it is recommended to use div tag over table to manage the

layout of the page.

DIT

BTE
TTB
SDC

CIT

6 Months
4 Months
8 Months

Office Automation

Basic
Intermediate
Advanced

Computer Hardware
Computer Networking
Website Development
E-Commerce MGMT
</menu>
<hr>
</body>
</html>

HTML Table Tags

Example 1 Example 2
<!DOCTYPE>
<html>
<head>
<style>
table, th, td {
 border: 1px solid black;
 border-collapse: collapse;
}
th, td {
 padding: 10px;
}
table#alter tr:nth-child(even) {
 background-color: #eee;
}
table#alter tr:nth-child(odd) {
 background-color: #fff;
}
table#alter th {
 color: white;
 background-color: gray;
}
</style>
</head>
<body>
<table id="alter">
<tr>
<th>First_Name</th>
<th>Last_Name</th>
<th>Marks</th>
</tr>
<tr>
<td>Imran</td>
<td>Noman</td>

<!DOCTYPE html>
<html lang="en">
<head>
<title>HTML Table Layout</title>
</head>
<body style="margin:0px;">
<table style="width:100%; border-
collapse:collapse; font:14px Arial,sans-serif;">
 <tr>
<td colspan="3" height=400px style="padding:10px

20px; background-color#3D43E2;">

<h1 style="font-size:24px;">My Slider Here</h1>
</td>
</tr>
<tr>
<td colspan="3" height=50px style="padding:10px
20px; background-color:#acb3b9;">
<h1 style="font-size:24px;">Navigation Menu
Here</h1> </td>
</tr>
<tr style="height:700px;">
<td style="width:20%; padding:20px; background-
color:#d4d7dc; vertical-align: top;">
<ul style="list-style:none; padding:0px; line-
height:24px;">
Home
About
Contact
US </td>
<td style="padding:20px; background-
color:#f2f2f2; vertical-align:top;">
<h2>Welcome to our site</h2>

Tag Description

<table></table> It defines a table.

<tr></tr> It defines a row in a table.

<th></th> It defines a header cell in a table.

<td></td> It defines a cell in a table.

<caption></caption> It defines the table caption.

<colgroup> It specifies a group of one or more columns in a table for formatting.

<col> It is used with <colgroup> element to specify column properties for
each column.

<tbody> It is used to group the body content in a table.

<thead> It is used to group the header content in a table.

<tfooter> It is used to group the footer content in a table.

<td>95</td>
</tr>
<tr>
<td>Zia</td>
<td>Zafar</td>
<td>80</td>
</tr>
<tr>
<td>Maryam</td>
<td>Javed</td>
<td>82</td>
</tr>
<tr>
<td>Nazia</td>
<td>Shaheen</td>
<td>72</td>
</tr>
</table>
</body></html>

<p>Here you will learn how to create
websites...</p> </td>
<td style="width:20%; padding:20px; background-
color:#d4d7dc; vertical-align: top;">
Ads Here </td>
</tr>
<tr>
<td colspan="3" height=400px style="padding:10px

20px; background-color#3D43E2;">

<h1 style="font-size:24px;">Footer Section
Here</h1> </td>
</tr>

<tr> <td colspan="2" style="padding:5px;
background-color:#acb3b9; text-align:center;">
<p>copyright © sardarazeem</p>
</td>
</tr>
</table>
</body> </html>

HTML Form

An HTML form is a section of a document which contains controls such as text fields,

password fields, checkboxes, radio buttons, submit button, menus etc.

An HTML form facilitates the user to enter data that is to be sent to the server for

processing such as name, email address, password, phone number, etc. .

Why use HTML Form

HTML forms are required if you want to collect some data from of the site visitor.

HTML Form Tags

HTML 5 Form Tags

Tag Description
<form></form> It defines an HTML form to enter inputs by the used side.
<input> It defines an input control.
<textarea> It defines a multi-line input control.
<label> It defines a label for an input element.
<fieldset> It groups the related element in a form.

<legend> It defines a caption for a <fieldset> element.
<select> It defines a drop-down list.
<optgroup> It defines a group of related options in a drop-down list.
<option> It defines an option in a drop-down list.
<button> It defines a clickable button.

Tag Description
<datalist> It specifies a list of pre-defined options for input control.

HTML Form Input Types

In HTML <input type=" "> is an important element of HTML form. The "type" attribute of

input element can be various types, which defines information field. Such as <input

type="text" name="name"> gives a text box.

HTML5 added new types on <input> element. Following is the list of types of elements

of HTML5

HTML <form> element attributes

In HTML there are various attributes available for <form> element which are given

below:

HTML action attribute

The action attribute of <form> element defines the process to be performed on form

when form is submitted, or it is a URI to process the form information.

<keygen> It defines a key-pair generator field for forms.
<output> It defines the result of a calculation.

type=" " Description
text Defines a one-line text input field
password Defines a one-line password input field
submit Defines a submit button to submit the form to server
reset Defines a reset button to reset all values in the form.
radio Defines a radio button which allows select one option.

checkbox Defines checkboxes which allow select multiple options form.
button Defines a simple push button, which can be programmed to

perform a task on an event.
file Defines to select the file from device storage.
image Defines a graphical submit button.

type=" " Description
color Defines an input field with a specific color.
date Defines an input field for selection of date.
datetime-
local

Defines an input field for entering a date without time zone.

email Defines an input field for entering an email address.
month Defines a control with month and year, without time zone.
number Defines an input field to enter a number.
url Defines a field for entering URL
week Defines a field to enter the date with week-year, without time

zone.

search Defines a single line text field for entering a search string.
tel Defines an input field for entering the telephone number.

The action attribute value defines the web page where information proceed. It can be

.php, .jsp, .asp, etc. or any URL where you want to process your form.

Example

<!DOCTYPE html>

<html>

 <body>

 <h2>Demo of action attribute of form element</h2>

 <form action="action.html" method="post">

 <label>User Name:</label>

 <input type="text" name="name">

 <label>User Password</label>

 <input type="password" name="pass">

 <input type="submit">

 </form>

 <p>It will redirect to a new page "action.html" when you click on submit button</p>

 </body>

</html>

HTML method attribute

The method attribute defines the HTTP method which browser used to submit the form.

The possible values of method attribute can be:

post:

We can use the post value of method attribute when we want to process the sensitive

data as it does not display the submitted data in URL.

Example:

<form action="action.html" method="post">

get:

The get value of method attribute is default value while submitting the form. But this is

not secure as it displays data in URL after submitting the form.

Example:

<form action="action.html" method="get">

HTML autocomplete attribute

The HTML autocomplete attribute is a newly added attribute of HTML5 which enables

an input field to complete automatically. It can have two values "on" and "off" which

enables autocomplete either ON or OFF. The default value of autocomplete attribute is

"on".

Example:

<form action="action.html" method="get" autocomplete="on">

Example:

<form action="action.html" method="get" autocomplete="off">

HTML enctype attribute

The HTML enctype attribute defines the encoding type of form-content while submitting the

form to the server. The possible values of enctype can be:

application/x-www-form-urlencoded: It is default encoding type if the enctype attribute is not

included in the form. All characters are encoded before submitting the form.

Example:

<form action="action.html" method="post" enctype="application/x-www-form-urlencoded" >

multipart/form-data: It does not encode any character. It is used when our form contains file-

upload controls.

Example:

<form action="action.html" method="post" enctype="multipart/form-data">

HTML novalidate attribute HTML5

The novalidate attribute is newly added Boolean attribute of HTML5. If we apply this

attribute in form then it does not perform any type of validation and submit the form.

Example:

<form action = "action.html" method = "get" novalidate>

HTML name attribute

The HTML name attribute defines the name of an input element. The name and value attribute

are included in HTTP request when we submit the form.

Example

<!DOCTYPE html>

<html>

 <body>

 <h2>Fill the form</h2>

 <form action = "action.html" method = "get">

 Enter name:
<input type="name" name="uname">

 Enter age:
<input type="number" name="age">

 Enter email:
<input type="email">

 <input type="submit" value="Submit">

 </form>

<p>Note: If you will not use name attribute in any input field, then that input field will

not be submitted, when submit the form.</p>

<p>Click on submit and see the URL where email is not included in HTTP request as we

have not used name attribute in the email input field</p>

 </body>

</html>

HTML value attribute

The HTML value attribute defines the initial value or default value of an input field.

Example

<!DOCTYPE html>

 <html>

 <body>

 <h2>Fill the form</h2>

 <form>

 <label>Enter your Name</label>

 <input type="text" name="uname" value="Enter Name">

 <label>Enter your Email-address</label>

 <input type="text" name="uname" value="Enter email">

 <label>Enter your password</label>

 <input type="password" name="pass" value="">

 <input type="submit" value="login">

 </form>

 <p>Note: In password input filed the value attribute will always unclear</p>

 </body>

</html>

HTML required attribute HTML5

HTML required is a Boolean attribute which specifies that user must fill that filed

before submitting the form.

Example

<!DOCTYPE html>

 <html>

 <body>

 <h2>Fill the form</h2>

 <form>

 <label>Enter your Email-address</label>

 <input type="text" name="uname" required>

 <label>Enter your password</label>

 <input type="password" name="pass">

 <input type="submit" value="login">

 </form>

 <p> If you will try to submit the form without completing email field then it will

give an error pop up.</p>

 </body>

</html>

HTML autofocus attribute HTML5

The autofocus is a Boolean attribute which enables a field automatically focused when

a webpage loads.

Example:

<form>

 <label>Enter your Email-address</label>

 <input type="text" name="uname" autofocus>

 <label>Enter your password</label>

 <input type="password" name="pass">

 <input type="submit" value="login">

 </form>

HTML placeholder attribute HTML5

The placeholder attribute specifies a text within an input field which informs the user

about the expected input of that filed.

The placeholder attribute can be used with text, password, email, and URL values.

Example

<form>

 <label>Enter your name</label>

 <input type="text" name="uname" placeholder="Your name">

 <label>Enter your Email address</label>

 <input type="email" name="email" placeholder="example@gmail.com">

 <label>Enter your password</label>

 <input type="password" name="pass" placeholder="your password">

 <input type="submit" value="login">

 </form>

HTML disabled attribute

The HTML disabled attribute when applied then it disable that input field. The disabled

field does not allow the user to interact with that field.

The disabled input filed does not receive click events, and these input value will not be

sent to the server when submitting the form.

Example:

<input type="text" name="uname" disabled>

HTML size attribute

The size attribute controls the size of the input field in typed characters.

Example:

<label>Account holder name</label>

 <input type="text" name="uname" size="40" required>

 <label>Account number</label>

 <input type="text" name="an" size="30" required>

 <label>CVV</label>

 <input type="text" name="cvv" size="1" required>

HTML form attribute

HTML form attribute allows a user to specify an input filed outside the form but

remains the part of the parent form.

Example

<!DOCTYPE html>

<html>

 <body>

 <form id="fcontrol">

 User Name:
<input type="text" name="uname">

 User password:
<input type="password" name="pass">

 </form>

 <p>The email field is outside the form but still it will remain part of the form</p>

 User email:
<input type="email" name="email" form="fcontrol" required>

 <input type="submit" form="fcontrol">

 </body>

</html>

HTML iframes

HTML Iframe is used to display a nested webpage (a webpage within a webpage). The

HTML <iframe> tag defines an inline frame, hence it is also called as an Inline frame.

An HTML iframe embeds another document within the current HTML document in the

rectangular region.

The webpage content and iframe contents can interact with each other using

JavaScript.

Iframe Syntax

An HTML iframe is defined with the <iframe> tag:

<iframe src="URL"></iframe>

Set Width and Height of iframe

You can set the width and height of iframe by using "width" and "height" attributes. By

default, the attributes values are specified in pixels but you can also set them in

percent. i.e. 50%, 60% etc.

Example: (Pixels)

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes example</h2>

<p>Use the height and width attributes to specify the size of the iframe:</p>

<iframe src="https://www.javatpoint.com/" height="300" width="400"></iframe>

</body>

</html>

Example: (Percentage)

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes</h2>

<p>You can use the height and width attributes to specify the size of the iframe:</p>

<iframe src="https://www.javatpoint.com/" height="50%" width="70%"></iframe>

</body>

</html>

CSS to set the height and width of the iframe.

<!DOCTYPE html>

<html>

<body>

<h2>HTML Iframes</h2>

<p>Use the CSS height and width properties to specify the size of the iframe:</p>

<iframe src="https://www.javatpoint.com/" style="height:300px;width:400px"></iframe>

</body>

</html>

Remove the border of iframe

By default, an iframe contains a border around it. You can remove the border by using

<style> attribute and CSS border property.

<!DOCTYPE html>

<html>

<body>

<h2>Remove the Iframe Border</h2>

<p>This iframe example doesn't have any border</p>

<iframe src="https://www.javatpoint.com/" style="border:none;"></iframe>

</body>

</html>

change the size, color, style of the iframe's border.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Custom Iframe Border</h2>

<iframe src="https://www.javatpoint.com/" style="border:2px solid tomato;"></iframe>

</body>

</html>

Iframe Target for a link

You can set a target frame for a link by using iframe. Your specified target attribute of

the link must refer to the name attribute of the iframe.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Iframe - Target for a Link</h2>

<iframe height="300px" width="100%" src="new.html" name="iframe_a"></iframe>

<p>JavaTpoint.com</p>

<p>The name of iframe and link target must have same value else link will not open as

a frame. </p>

</body>

</html>

new.html output code:

<!DOCTYPE html>

<html>

<head>

 <style>

 p{ font-size: 50px;

 color: red;}

</style>

</head>

<body style="background-color: #c7f15e;">

 <p>This is a link below the ifarme click on link to open new iframe. </p>

</body>

</html>

Embed YouTube video using iframe

You can also add a YouTube video on your webpage using the <iframe> tag. The attached

video will be played at your webpage and you can also set height, width, autoplay, and

many more properties for the video.

Following are some steps to add YouTube video on your webpage:

1) Goto YouTube video which you want to embed.

2) Click on SHARE ➦ under the video.

3) Click on Embed <> option.

4) Copy HTML code.

5) Paste the code in your HTML file

6) Change height, width, and other properties (as per requirement).

Example:

<iframe width="550" height="315" src="https://www.youtube.com/embed/JHq3pL4cdy4"

frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-

in-picture" allowfullscreen style="padding:20px;"></iframe>

 <iframe width="550" height="315" src="https://www.youtube.com/embed/O5hShUO

6wxs" frameborder="0" allow="accelerometer; autoplay; encrypted-

media; gyroscope; picture-in-picture" style="padding:20px;">></iframe>

HTML Comments

Comments are some text or code written in your code to give an explanation about the

code, and not visible to the user. Comments which are used for HTML file are known as

HTML comments. Anything written between these tags will be ignored by the browser,

so comments will not be visible on the webpage.

1) Comments of any code make code easy to understand and increase readability

of code.

2) Comments are also part of the code, which gives an explanation of the code.

How to add comment In HTML

Syntax

<! -- Write commented text here -->

<!-- <p>There is some text</p>

 <p>There is second text</p> -->

Example:

<!DOCTYPE html>

<html>

<!-- This is Header section -->

<head>

 <!-- Internal CSS -->

 <style>

 body{

 text-align: center;

 background-color: #f0f8ff;

 font-size: 30px;

 color: red;

 }

 </style>

</head>

<!-- This is body section, write code here which you want to display on web-page -->

<body>

 <!-- heading tag -->

 <h2>First WebPage</h2>

 <!-- Paragraph tag -->

 <p>Write your Content here!!!</p>

</body>

</html>

Multiline Comment

In HTML code, we can also comments multiple lines at a time. In multiline comment we

can use any description about code or multiple line code to debug, etc.

Syntax

<!---

Your code is commented.

Write description of code.

It will not display at webpage.

-->

Example:

 <h2>Cake Gallery</h2>

<!-- This is image for a yummy cake

you can see it on your web-page

of your favorite browser -->

HTML <frameset> tag (Not supported in HTML5)

HTML <frameset> tag is used to contain the group of frames which can be controlled

and styled as a unit. The <frameset> element also specifies the number of rows and

columns in the frameset, and how much space they will occupy in a frame.

Syntax

<frameset cols=" ">............</frameset>

Display Block

Start tag/End tag Both Start and End Tag

Example 1
<html>
<Frameset rows=”20%,*”>
<frame src=”URL”>
<frame src=”URL”>
</frameset>
</html>

Example 2
<html>
<Frameset rows=”20%,*,20%”>
<frame src=”URL”>
<frame src=”URL”>
<frame src=”URL”>

</frameset>
</html>

Example 3
<html>
<Frameset cols=”20%,*”>
<frame src=”URL”>
<frame src=”URL”>
</frameset>
</html>

Example 4
<html>
<Frameset cols=”20%,*,20%”>
<frame src=”URL”>
<frame src=”URL”>
<frame src=”URL”>

</frameset>
</html>

Usage Frames

20% Frame To Run Page 1

80% Frame To Run Page 2

20% Frame 1

60% Frame 2

20% Frame 3

C
o

lu
m

n
 F

ra
m

e1

C
o

lu
m

n
 F

ra
m

e
2

C
o

lu
m

n
 F

ra
m

e1

Column Frame 2

C
o

lu
m

n
 F

ra
m

e
3

Example 5
<html>
<Frameset rows=”20%,*,10%”>
<frame src=”URL”>
<frameset cols=”20%,*,20%”>
<frame src=”URL”>
<frame src=”URL”>
<frame src=”URL”>
</frameset>
<frame src=”URL”
</frameset>
</html>

Example 6
<html>
<Frameset rows=”20%,*,10%”>
<frame src=”navigator.html”>
<frameset cols=”20%,*,20%”>
<frame src=”verticalMenu.html”>
<frame src=”content.html”>
<frame src=”ads.html”>
</frameset>
<frame src=”copyright.html”>
</frameset>
</html>

Same As Above

HTML Layouts

HTML layouts provide a way to arrange web pages in well-mannered, well-structured,

and in responsive form or we can say that HTML layout specifies a way in which the

web pages can be arranged. Web-page layout works with arrangement of visual

elements of an HTML document.

Web page layout is the most important part to keep in mind while creating a website so

that our website can appear professional with the great look. You can also use CSS and

JAVASCRIPT based frameworks for creating layouts for responsive and dynamic

website designing.

Every website has a specific layout to display content in a specific manner.

Following are different HTML5 elements which are used to define the different parts of

a webpage.

➢ <header>: It is used to define a header for a document or a section.

➢ <nav>: It is used to define a container for navigation links

➢ <section>: It is used to define a section in a document

20% Row

C
o

l1

Col2

C
o

l3

10% Row

➢ <article>: It is used to define an independent self-contained article

➢ <aside>: It is used to define content aside from the content (like a sidebar)

➢ <footer>: It is used to define a footer for a document or a section

➢ <details>: It is used to define additional details

➢ <summary>: It is used to define a heading for the <details> element

HTML <header>

The <header> element is used to create header section of web pages. The header

contains the introductory content, heading element, logo or icon for the webpage, and

authorship information.

<!DOCTYPE html>
<html>
 <head>
 <title>First Webpage</title>
 </head>
 <body>
 <header style="background-color: #303030; height: 80px;width: 100%">
 <h1 style="font-size: 30px; color: white;text-align: center; padding-top:
15px;">Welcome to MyFirstWebpage</h1>
 </header>
 </body>
</html>

HTML <nav>

The <nav> elements is a container for the main block of navigation links. It can contain

links for the same page or for other pages.

<!DOCTYPE html>
<html>
 <head>
 <style>
 li{ display: inline-block;
 padding: 10px}
 </style>
 </head>

 <body>
 <nav style="background-color:#bcdeef;">
 <h1 style="text-align: center;">Navgation Links</h1>

 link1
 link2
 link3
 link4

 </nav>
 </body>
</html>

HTML <section>

HTML <section> elements represent a separate section of a web page which contains

related element grouped together. It can contain: text, images, tables, videos, etc.

<!DOCTYPE html>
<html>
<head>
 <title>Page Section</title>
 </head>
 <body>
 <section style="background-color:#ff7f50; width: 100%; border: 1px solid black;">
 <h2>Introduction to HTML</h2>
 <p>HTML is a markup language which is used for creating attractive web
pages with the help of styling, and which looks in a nice format on a web
browser.</p>
 </section>
 </body>
</html>

HTML <article>

The HTML tag is used to contain a self-contained article such as big story, huge article.

<!DOCTYPE html>
<html>
<head>
 <title>Article Example</title>
</head>
<body>
<article style="width: 100%; border:2px solid black; background-color: #fff0f5;">
 <h2>History of Computer</h2>
 <p>Write your content here for the history of computer</p>
</article>

</body>
</html>

HTML <aside>

HTML <aside> define aside content related to primary content. The <aside> content

must be related to the primary content. It can function as side bar for the main content

of web page.

<!DOCTYPE html>
<html>
<head>
 <title>Aside Example</title>
</head>
<body>
 <aside style="background-color:#e6e6fa">
 <h2>Sidebar information</h2>
 <p>This conatins information which will represent like a side bar for a
webpage</p>
 </aside>
</body>
</html>

HTML <footer>

HTML <footer> element defines the footer for that document or web page. It mostly

contains information about author, copyright, other links, etc.

<!DOCTYPE html>
<html>
 <head>
 <title>Footer Section</title>
 </head>
 <body>
 <footer style="background-color:#f0f8ff; width: 100%; text-align: center;">
 <h3>Footer Example</h3>
 <p>© Copyright 2018-2020. </p>
 </footer>
 </body>
</html>

HTML <details>

HTML <details> element is used to add extra details about the web page and use can

hide or show the details as per requirement.

<!DOCTYPE html>
<html>
<head>
 <title>Deatils element</title>
</head>
<body>
 <details style="background-color: #f5deb3">
 <summary>This is visible section: click to show other details</summary>
 <p>This section only shows if user want to see it. </p>
 </details>
</body>
</html>

HTML <summary>

HTML <summary> element is used with the <details> element in a web page. It is used as

summary, captions about the content of <details> element.

<!DOCTYPE html>
<html>
<head>
 <title>Summary Example</title>
</head>
<body>
 <details>
 <summary>HTML is acronym for?</summary>
 <p style="color: blue; font-size: 20px;">Hypertext Markup Language</p>
 </details>
</body>
</html>

Full Webpage Layout
<!DOCTYPE html>
<html>

<head>
 <title>Web Page Layout</title>
 <style>
 .head1 {
 font-size: 40px;
 color: #009900;
 font-weight: bold;
 }

 .head2 {
 font-size: 17px;

 margin-left: 10px;
 margin-bottom: 15px;
 }

 body {
 margin: 0 auto;
 background-position: center;
 background-size: contain;
 }

 .menu {
 position: sticky;
 top: 0;
 background-color: #009900;
 padding: 10px 0px 10px 0px;
 color: white;
 margin: 0 auto;
 overflow: hidden;
 }

 .menu a {
 float: left;
 color: white;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 20px;
 }

 .menu-log {
 right: auto;
 float: right;
 }

 footer {
 width: 100%;
 bottom: 0px;
 background-color: #000;
 color: #fff;
 position: absolute;
 padding-top: 20px;
 padding-bottom: 50px;
 text-align: center;
 font-size: 30px;

 font-weight: bold;
 }

 .body_sec {
 margin-left: 20px;
 }
 </style>
</head>

<body>

 <!-- Header Section -->
 <header>
 <div class="head1">
 Sardar Azeem Website Developer
 </div>
 <div class="head2">
 A Website Development Platform For PICT Academy Students
 </div>
 </header>

 <!-- Menu Navigation Bar -->
 <nav class="menu">
 HOME
 NEWS

 NOTIFICATIONS

 <div class="menu-log">
 LOGIN
 </div>
 </nav>

 <!-- Body section -->
 <main class="body_sec">
 <section id="Content">
 <h3>Content section</h3>
 </section>
 </main>

 <!-- Footer Section -->
 <footer>Footer Section</footer>
</body>

</html>

HTML Computer code

When we are programming, sometimes it is mandatory to show the Output result, error

message, or coding part to user on a webpage. Hence to solve this issue HTML uses

different tags for the user inputs, codes, programs, etc. With the help of these tags, you

will be able to write codes to display on your webpage.

Following is a list of some tags which are used in HTML for this task.

• <code>

• <kbd>

• <samp>

• <var>

• <pre>

HTML <code> element

It is used to represent some programming code on your website. The content written

between tag will be displayed in default monospace font.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>Computer Code</h2>

<p>This is a programming code:</p>

<code>

x = 5;

y = 6;

z = x + y;

</code>

</body>

</html>

HTML <kbd> Element

It is used to represent user input, keyboard input, voice command etc. Text written

within <kbd>.....</kbd> tags is typically displayed in the browser's default monospace

font.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>The kbd Element</h2>

<kbd>This is how content written within kbd element looks like.</kbd></p>

</body>

</html>

HTML <samp> Element

The HTML <samp> element is used to represent a program's output. Text written within

samp element is typically displayed in the browser's default monospace font.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>The samp Element</h2>

<samp>This is how the content within samp element looks like. </samp>

</body>

</html>

HTML <var> element

The HTML <var> element is used to define a variable. The variable could be a variable in

a mathematical expression or a variable in programming context.

Example:

<!DOCTYPE html>

<html>

<body>

<h2>The var Element</h2>

<p>This is a famous formula: <var>E</var> = <var>mc</var>².</p>

</body>

</html>

HTML <pre> element

The <pre> element defines preformatted text, which displays the content within it in a

fixed-width font. It keeps the content into its original format and ignores all formatting.

Example:

<!DOCTYPE html>

<html>

<body>

<h3>Example of pre tag</h3>

 <pre>

 This is content written

 within pre tag, and pre tag will ignore all

 spaces, break lines, and will display the content

 as in original format.

 </pre>

 </body>

</html>

HTML 5 Event Attributes

When a browser reacts on user action, then it is called as an event. For example, when

you click on the submit button, then if the browser displays an information box.

In HTML5 there are lots of event attributes available which can be activated using a

programming language such as JavaScript.

Following is a table of event attributes, using these attributes you can perform several

events.

Windows Event Attributes

Windows events are related for the window object, and it can only be applied with

<body> tag.

Form Event Attributes

Form event occurs when the user performs some action within the form such as

submitting the form, selecting input field, etc.

The form events can be used with any element, but these are mainly used with HTML

form elements.

Attribute Description
onafterprint Executed the script after the document is printed.
onbeforeprint Executed the script before the document is printed.
onbeforeunload Executed the script before a document being unloaded.
onerror Executed the script when an error occurs.
onhashchange Executed the script when the anchor part in URL of the

webpage is changed.

onload Executed the script when the webpage is entirely loaded.
onmessage Executed the script when a message event occurs.
onoffline Executed the script when the network connection is

disconnected, and browser started working offline.
ononline Executed the script when the browser started working

online
onpagehide Executed the script when the current webpage is hidden

such as if the user has moved away from the current
webpage.

onpageshow Executed the script when the current webpage is focused.
onpopstate Executed the script when the window's active history is

changed.
onresize Executed the script when the window is resized.
onstorage Executed the script when web storage is updated.
onunload Executed the script when the current webpage is unloaded,

or window is closed.

Attribute Description
onblur Executed the script when form element loses the focus.
onchange Executed the script when the value of the element is changed.
onfocus Trigger an event when the element gets focused.
oninput Executed the script when the user enters input to the element.
oninvalid Executed the script when the element does not satisfy its

predefined constraints.
onreset Triggers the event when user reset the form element values.
onsearch Triggers the event when a search field receives some input.

Keyboard Event Attributes

Keyboard event occurs when a user interacts with the keyboard. Following is a list of

the Keyboard event.

Mouse Event Attributes

Clipboard Event Attributes

onselect Triggers the event when the user has selected some text.
onsubmit Triggers the event when a form is submitted.

Attribute Description
onkeydown Triggers the event when the user presses down a key on the

keyboard.
onkeypress Trigger the event when the user presses the key which displays

some character.
onkeyup Trigger the event when the user releases the currently pressed

key.

Attribute Description
onclick Trigger the event when the mouse clicks on the element.
ondblclick Trigger the event when mouse double-click occurs on the

element.
onmousedown Trigger the event when the mouse button is pressed on the

element.
onmousemove Trigger the event when the mouse pointer moves over the

element.
onmouseout Trigger the event when the mouse moves outside the

element.
onmouseover Trigger the event when the mouse moves onto the element.
onmouseup Trigger the event when the mouse button is released.
onmousewheel Deprecated. Use the onwheel attribute.
onwheel Trigger the event when the mouse wheel rolls up or down on

the element

Attribute Description
oncopy Trigger the event when the user copies the content to the system

clipboard.
oncut Trigger the event when the content of an element is cut and copy to

the clipboard.
onpaste Trigger the event when the user pastes some content in an

element.

Media Event Attributes

Attribute Description
onabort Executed the script when media playback is aborted.
oncanplay Executed the script when the media file is ready to play.
oncanplaythrough Executed the script when the media file is ready to play

without buffering or stopping.
oncuechange Executed the script text cue of <track> element is

changed.
ondurationchange Executed the script when the media file duration is

changed.
onemptied Executed the script if media occurs some fatal error, and

the file becomes unavailable.
onended Executed the script when the media file occurs its end

point.
onerror Executed the script when some error occurred while

fetching the media data.
onloadeddata Executed the script when media data is loaded.
onloadedmetadata Executed the script when metadata of media file is

loaded.
onloadstart Executed the script when loading of media file starts.
onpause Executed the script when media playback is paused.

onplay Executed the script when media file ready to play after
being paused.

onplaying Executed the script when media file is started playing.
onprogress Executed the script when the browser is in the process of

getting the media data.
onratechange Executed the script when playback speed changed.
onseeked Executed the script when seek operation is ended and

seeking attribute is set to false.
onseeking Executed the script when seek operation is active and

seeking attribute is set to true.
onstalled Executed the script when browser unexpectedly stopped

fetching the data media.
onsuspend Executed the script if fetching of media data is

intentionally stopped.
ontimeupdate Executed the script when playback position is changed,

such as if a user fasts forward the track.
onvolumechange Executed the script when media volume is changed

(muted or unmuted).
onwaiting Executed the script if playback pause to wait for loading

more data.

HTML 5 Google Maps

HTML Google Map is used to display maps on your webpage. You can simply add a map

on your basic HTML page.

Syntax:

<!DOCTYPE html>

<html>

<body>

<h1>First Google Map Example</h1>

<div id="map">My map will go here...</div>

</body>

</html>

Set the Map Size

You can set the map size by using the following syntax:

<div id="map" style="width:400px;height:400px;background:grey"></div>

You can set the map properties by creating a function. Here, the function is myMap().

This example shows the Google map centered in London, England.

We have to use the functionalities of Google Maps API provided by a JavaScript library

located at Google. Use the following script to refer to the Google Maps API with a

callback to the myMap function.

<script src="https://maps.googleapis.com/maps/api/js?callback=myMap"></script>

Example:

<!DOCTYPE html>

<html>

<body>

<h1>My First Google Map</h1>

<div id="map" style="width:400px;height:400px;background:grey"></div>

<script>

function myMap() {

var mapOptions = {

 center: new google.maps.LatLng(51.5, -0.12),

 zoom: 10,

 mapTypeId: google.maps.MapTypeId.HYBRID

}

var map = new google.maps.Map(document.getElementById("map"), mapOptions);

}

</script>

<script src="https://maps.googleapis.com/maps/api/js?key=AIzaSyBu-

916DdpKAjTmJNIgngS6HL_kDIKU0aU&callback=myMap"></script>

</body>

</html>

mapOptions: It is a variable which defines the properties for the map.

center: It specifies where to center the map (using latitude and longitude coordinates).

zoom: It specifies the zoom level for the map (try to experiment with the zoom level).

mapTypeId: It specifies the map type to display. The following map types are supported:

ROADMAP, SATELLITE, HYBRID, and TERRAIN.

var map=new google.maps.Map(document.getElementById("map"), mapOptions): It

creates a new map inside the

element with id="map", using the parameters that are passed (mapOptions).

HTML Multiple Maps

You can use different map types in a single example.

Example:

<!DOCTYPE html>

<html>

<body>

<div id="googleMap1" style="width:400px;height:300px;"></div>

<div id="googleMap2" style="width:400px;height:300px;"></div>

<div id="googleMap3" style="width:400px;height:300px;"></div>

<div id="googleMap4" style="width:400px;height:300px;"></div>

<script>

function myMap() {

 var mapOptions1 = {

 center: new google.maps.LatLng(51.508742,-0.120850),

 zoom:9,

 mapTypeId: google.maps.MapTypeId.ROADMAP

 };

 var mapOptions2 = {

 center: new google.maps.LatLng(51.508742,-0.120850),

 zoom:9,

 mapTypeId: google.maps.MapTypeId.SATELLITE

 };

 var mapOptions3 = {

 center: new google.maps.LatLng(51.508742,-0.120850),

 zoom:9,

 mapTypeId: google.maps.MapTypeId.HYBRID

 };

 var mapOptions4 = {

 center: new google.maps.LatLng(51.508742,-0.120850),

 zoom:9,

 mapTypeId: google.maps.MapTypeId.TERRAIN

 };

 var map1 = new google.maps.Map(document.getElementById("googleMap1"),mapOption

s1);

 var map2 = new google.maps.Map(document.getElementById("googleMap2"),mapOptio

ns2);

 var map3 = new google.maps.Map(document.getElementById("googleMap3"),mapOptio

ns3);

 var map4 = new google.maps.Map(document.getElementById("googleMap4"),mapOptio

ns4);

}

</script>

<script src="https://maps.googleapis.com/maps/api/js?key=AIzaSyBu-

916DdpKAjTmJNIgngS6HL_kDIKU0aU&callback=myMap"></script>

</body>

</html>

HTML Multimedia

Multimedia on the web is sound, music, videos, movies, and animations.

HTML Video

The HTML <video> element is used to show a video on a web page.

Example 1 Example 2
<!DOCTYPE html>
<html>
<body>

<video width="400" controls>
 <source src="mov_bbb.mp4"
type="video/mp4">
 <source src="mov_bbb.ogg"
type="video/ogg">
 Your browser does not support HTML
video.
</video>

<p>
Video courtesy of
<a href="https://www.bigbuckbunny.org/"
target="_blank">Big Buck Bunny.
</p></body>
</html>

<!DOCTYPE html>
<html>
<body>

<video width="320" height="240" autoplay
muted>
 <source src="movie.mp4"
type="video/mp4">
 <source src="movie.ogg"
type="video/ogg">
 Your browser does not support the
video tag.
</video>

</body>
</html>

HTML Audio

The HTML <audio> element is used to play an audio file on a web page.

Example 1 Example 2
<!DOCTYPE html>
<html>
<body>

<audio controls>
 <source src="horse.ogg" type="audio/ogg">
 <source src="horse.mp3"
type="audio/mpeg">
Your browser does not support the audio
element.
</audio>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<audio controls autoplay muted>
 <source src="horse.ogg" type="audio/ogg">
 <source src="horse.mp3"
type="audio/mpeg">
Your browser does not support the audio
element.
</audio>

</body>
</html>

HTML Plug-ins

Plug-ins are computer programs that extend the standard functionality of the browser.

Plug-ins were designed to be used for many different purposes:

• To run Java applets

• To run Microsoft ActiveX controls

• To display Flash movies

• To display maps

• To scan for viruses

• To verify a bank id

The <object> Element
The <object> element is supported by all
browsers.
The <object> element defines an
embedded object within an HTML
document.
It was designed to embed plug-ins (like
Java applets, PDF readers, and Flash
Players) in web pages, but can also be
used to include HTML in HTML:

The <embed> Element
The <embed> element is supported in all
major browsers.
The <embed> element also defines an
embedded object within an HTML
document.
Web browsers have supported the
<embed> element for a long time.
However, it has not been a part of the
HTML specification before HTML5.

<!DOCTYPE html>
<html>
<body>

<object width="100%" height="500px"
data="snippet.html"></object>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<embed src="audi.jpeg">

</body>
</html>

HTML YouTube Video

The easiest way to play videos in HTML, is to use YouTube.

YouTube Video Id

YouTube will display an id (like tgbNymZ7vqY), when you save (or play) a video.

You can use this id, and refer to your video in the HTML code.

To play your video on a web page, do the following:

• Upload the video to YouTube

• Take a note of the video id

• Define an <iframe> element in your web page

• Let the src attribute point to the video URL

• Use the width and height attributes to specify the dimension of the player

• Add any other parameters to the URL

Example 1 Example 2
<!DOCTYPE html>
<html>
<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/t
gbNymZ7vqY">
</iframe>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/tgb
NymZ7vqY?autoplay=1&mute=1">
</iframe>

</body>
</html>

Example 3 Example 4
<!DOCTYPE html> <!DOCTYPE html>

<html>
<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/t
gbNymZ7vqY?playlist=tgbNymZ7vqY&loo
p=1">
</iframe>

</body>
</html>

<html>
<body>

<iframe width="420" height="345"
src="https://www.youtube.com/embed/tgb
NymZ7vqY?controls=0">
</iframe>

</body>
</html>

Coding Quotes For Students

CODING LIKE POETRY SHOULD BE SHORT AND CONCISE. ― SARDAR AZEEM

IT’S NOT A BUG; IT’S AN UNDOCUMENTED FEATURE. ― SARDAR AZEEM

FIRST, SOLVE THE PROBLEM. THEN, WRITE THE CODE. – SARDAR AZEEM

CODE IS LIKE HUMOR. WHEN YOU HAVE TO EXPLAIN IT, IT’S BAD. – SARDAR AZEEM

MAKE IT WORK, MAKE IT RIGHT, MAKE IT FAST. – SARDAR AZEEM

CLEAN CODE ALWAYS LOOKS LIKE IT WAS WRITTEN BY SOMEONE WHO CARES. — SARDAR AZEEM

OF COURSE, BAD CODE CAN BE CLEANED UP. BUT IT’S VERY EXPENSIVE.” — SARDAR AZEEM

CSS
What is CSS?

CSS stands for Cascading style sheets. It describes to the user how to display HTML elements

on the screen in a proper format. CSS is the language that is used to style HTML documents. In

simple words, cascading style sheets are a language used to simplify the process of making a

webpage.

CSS is used to handle some parts of the webpage. With the help of CSS, we can control the

color of text and style of fonts, and we can control the spacing between the paragraph and

many more things. CSS is easy to understand but provides strong control on the Html

documents.CSS is combined with HTML.

Advantages of CSS
• Faster page speed: It has a faster page speed than other code's page speeds. With the

help of the CSS rule, we can apply it to all occurrences of certain tags in HTML

documents.

• Better user experience: CSS makes a webpage very attractive to the eyes. Also, CSS

makes it user-friendly. When the button or text is in a proper format, it improves the

user experience.

• Quicker Development time: With the help of CSS, we can specify the format and style

the multiple pages into one code string. In cascading style sheet, we can make a

duplicate copy of several website pages.

If we make a webpage, it has the same formatting, looks, and feel, so with the help of

the CSS rule for one page, and it is sufficient for all the pages.

• Easy Formatting changes: In CSS, if we need to make changes in the format, it is very

easy; we only need to change the one-page format it will automatically apply to the

other pages of CSS.

There is no need to correct individual pages in a CSS style sheet. If we fix a CSS style

sheet, it will automatically update the other CSS style sheet.

• Compatibility: Compatibility is very important in today's age. If we create any webpage, it

should be very responsive and user-friendly. CSS is used with Html to make webpage

design responsive.

CSS Syntax

The CSS provides the style to the HTML element, which the browser interprets. After

being interpreted by the browser, the CSS style property will be applied to all the

elements of the HTML. We can provide style property to the HTML element in three

parts. These three parts are as follows.

1. Selector

It is an HTML tag. All the style properties of the CSS will be applied to the selector. The

selector tag like <h1> or <table> etc.

2. Property

It is a type of attribute that is present in HTML tags. All the attributes of the HTML will

be converted to the CSS properties. The CSS properties like color, border, etc.

3. Value

In HTML, these are assigned to the properties. For example, the color property can

have a value of either red or #F1F1F1, etc.

Syntax:

selector { property: value }

Example 1 Example 2
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-
width, initial-scale=1.0">
 <title>Document</title>
<!—Application Of CSS -- >
 <style>
body {
 font-family: Arial, sans-serif;
 margin: 0;

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: lightblue;
}

h1 {
 color: white;
 text-align: center;
}

 padding: 0;
 background-color: #f2f2f2;
}

#header {
 background-color: #333;
 color: white;
 text-align: center;
 padding: 20px;
}

h1 {
 font-size: 36px;
 margin-bottom: 20px;
}

p {
 font-size: 18px;
 margin-bottom: 10px;
}

.button {
 background-color: #ff0000;
 color: white;
 padding: 10px 20px;
 border: none;
 text-align: center;
 text-decoration: none;
 display: inline-block;
 font-size: 16px;
 border-radius: 5px;
 cursor: pointer;
}

.button:hover {
 background-color: #990000;
}
 </style>
</head>
<body>
 <div id="header">
 <h1>Lets Start Learning CSS From
Experts!</h1>

p {
 font-family: verdana;
 font-size: 20px;
}
</style>
</head>
<body>

<h1>My First CSS Example</h1>
<p>This is a paragraph.</p>

</body>
</html>

 <p>Welcome to The World Of Styling a
Website:</p>
 <button class="button">Click Me!</button>
 </div>
</body>
</html>

Types of CSS (Where To Write CSS)

There are three types of CSS:

1. Inline CSS

Inline CSS is used to style the elements of HTML documents. It is used in HTML to style

the attributes without using the selectors. It is challenging to manage the inline

function in websites compared to other types. It is very helpful in Html in some

situations.

Example of inline CSS:

<p style="color: orange; font-size: 25px;">Here is my first paragraph.</p>

Example
<!DOCTYPE html>
<html>
<body>

<h1 style="color:blue;text-align:center;">This is a heading</h1>
<p style="color:red;">This is a paragraph.</p>

</body>
</html>

2. Internal CSS

Internal CSS is used to design the style single page effectively. It is more time-

consuming because we can only work on one page or we need to style each web page.

In internal CSS, we style a single webpage uniquely.

Syntax:

<style>

--- required styles--

</style>

Example
<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: linen;
}

h1 {
 color: maroon;
 margin-left: 40px;
}
</style>
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

3. External CSS

External CSS is used to link all webpage with an external file. CSS, which can be

created in a text file. It is more efficient for styling an extensive webpage. It also

increases the readability of the CSS files.

1. Create CSS File and save it by “name.css”.

2. Create html file and link CSS by link tag as follows.

Syntax:

<head>

 <link rel="stylesheet" href="nameOfTheSheet.css">

</head>

CSS File Code HTML File Code
body {
 background-color: lightblue;
}

<!DOCTYPE html>
<html>
<head>

h1 {
 color: navy;
 margin-left: 20px;
}

<link rel="stylesheet" href="mystyle.css">
</head>
<body>

<h1>This is a heading</h1>
<p>This is a paragraph.</p>

</body>
</html>

CSS Selector

CSS selectors are used to select the content you want to style. Selectors are the part

of CSS rule set. CSS selectors select HTML elements according to its id, class, type,

attribute etc.

There are several different types of selectors in CSS.

1. CSS Element Selector

2. CSS Id Selector

3. CSS Class Selector

4. CSS Universal Selector

5. CSS Group Selector

1) CSS Element Selector

The element selector selects the HTML element by name. e.g. (p,h1,body)

Example

<!DOCTYPE html>

<html>

<head>

<style>

p{

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<p>This style will be applied on every paragraph.</p>

<p id="para1">Me too!</p>

<p>And me!</p>

</body>

</html>

2) CSS Id Selector

The id selector selects the id attribute of an HTML element to select a specific element.

An id is always unique within the page so it is chosen to select a single, unique

element.

It is written with the hash character (#), followed by the id of the element.

Example

<!DOCTYPE html>

<html>

<head>

<style>

#para1 {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<p id="para1">I am Called By ID</p>

<p>This paragraph will not be affected. </p>

</body>

</html>

3) CSS Class Selector

The class selector selects HTML elements with a specific class attribute. It is used with

a period character. (full stop symbol) followed by the class name.

Example

<!DOCTYPE html>

<html>

<head>

<style>

.center {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1 class="center">This heading is blue and center-aligned.</h1>

<p class="center">This paragraph is blue and center-aligned.</p>

</body>

</html>

CSS Class Selector for specific element

If you want to specify that only one specific HTML element should be affected then you

should use the element name with class selector.

Example

<!DOCTYPE html>

<html>

<head>

<style>

p.center {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1 class="center">This heading is not affected</h1>

<p class="center">This paragraph is blue and center-aligned.</p>

</body>

</html>

4) CSS Universal Selector

The universal selector is used as a wildcard character(* Estaric). It selects all the

elements on the pages.

Example

<!DOCTYPE html>

<html>

<head>

<style>

* {

 color: green;

 font-size: 20px;

}

</style>

</head>

<body>

<h2>This is heading</h2>

<p>This style will be applied on every paragraph.</p>

<p id="para1">Me too!</p>

<p>And me!</p>

</body>

</html>

5) CSS Group Selector

The grouping selector is used to select all the elements with the same style definitions.

Grouping selector is used to minimize the code. Commas are used to separate each

selector in grouping.

Example

<!DOCTYPE html>

<html>

<head>

<style>

h1, h2, p {

 text-align: center;

 color: blue;

}

</style>

</head>

<body>

<h1>Hello Pictacademy.com</h1>

<h2> Hello Pictacademy.com (In smaller font) </h2>

<p>This is a paragraph Hello Pictacademy.com. </p>

</body>

</html>

CSS Comments

Comments are used to explain the code, and may help when you edit the source code

at a later date.

Comments are ignored by browsers.

A CSS comment is placed inside the <style> element, and starts with /* and ends

with */:

Example

/* This is a single-line comment */

p {

 color: red;

}

/* This is a

Multi-line

comment */

Example
<!DOCTYPE html>
<html>
<head>
<style>
p {
 color: red; /* Set text color to red */
}
</style>
</head>
<body>

<h2>My Heading</h2>

<!-- These paragraphs will be red -->
<p>Hello World!</p>
<p>This paragraph is styled with CSS.</p>
<p>HTML and CSS comments are not shown in the output.</p>

</body>
</html>

CSS Colors

Colors are specified using predefined color names, or RGB, HEX, HSL, RGBA, HSLA

values.

CSS Color Names

In CSS, a color can be specified by using a predefined color name:

color: “cyan”;

background-color: Dodger Blue;

Example Colors By Name

<!DOCTYPE html>

<html>

<body>

<h1 style="background-color:Tomato;">Tomato</h1>

<h1 style="background-color:Orange;">Orange</h1>

<h1 style="background-color:DodgerBlue;">DodgerBlue</h1>

<h1 style="background-color:MediumSeaGreen;">MediumSeaGreen</h1>

<h1 style="background-color:Gray;">Gray</h1>

<h1 style="background-color:SlateBlue;">SlateBlue</h1>

<h1 style="background-color:Violet;">Violet</h1>

<h1 style="background-color:LightGray;">LightGray</h1>

</body>

</html>

Example 2 Colors By Name (Text Color)

<!DOCTYPE html>

<html>

<body>

<h3 style="color:Tomato;">Hello World</h3>

<p style="color:DodgerBlue;">Lorem ipsum dolor sit amet, consectetuer adipiscing elit,

sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat

volutpat.</p>

<p style="color:MediumSeaGreen;">Ut wisi enim ad minim veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.</p>

</body>

</html>

Example 3 Colors by Name (Border Color)

<!DOCTYPE html>

<html>

<body>

<h1 style="border: 2px solid Tomato;">Hello World</h1>

<h1 style="border: 2px solid DodgerBlue;">Hello World</h1>

<h1 style="border: 2px solid Violet;">Hello World</h1>

</body>

</html>

CSS RGB Colors

An RGB color value represents RED, GREEN, and BLUE light sources.

RGB Value

Syntax ➔ rgb (red, green, blue)

Each parameter (red, green, and blue) defines the intensity of the color between 0 and

255.

For example, rgb(255, 0, 0) is displayed as red, because red is set to its highest value

(255) and the others are set to 0.

To display black, set all color parameters to 0, like this: rgb(0, 0, 0).

To display white, set all color parameters to 255, like this: rgb(255, 255, 255).

RGBA Value

RGBA color values are an extension of RGB color values with an alpha channel - which

specifies the opacity for a color.

An RGBA color value is specified with:

Syntax ➔ rgba(red, green, blue, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0

Example Simple RGB Colors Example Using RGBA Colors
<!DOCTYPE html>
<html>
<body>

<h1>Specify colors using RGB values</h1>

<h2 style="background-color:rgb(255, 0,
0);">rgb(255, 0, 0)</h2>
<h2 style="background-color:rgb(0, 0,
255);">rgb(0, 0, 255)</h2>
<h2 style="background-color:rgb(60, 179,
113);">rgb(60, 179, 113)</h2>
<h2 style="background-color:rgb(238, 130,
238);">rgb(238, 130, 238)</h2>
<h2 style="background-color:rgb(255, 165,
0);">rgb(255, 165, 0)</h2>
<h2 style="background-color:rgb(106, 90,
205);">rgb(106, 90, 205)</h2>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<h1>Make transparent colors with
RGBA</h1>

<h2 style="background-color:rgba(255,
99, 71, 0);">rgba(255, 99, 71, 0)</h2>
<h2 style="background-color:rgba(255,
99, 71, 0.2);">rgba(255, 99, 71, 0.2)</h2>
<h2 style="background-color:rgba(255,
99, 71, 0.4);">rgba(255, 99, 71, 0.4)</h2>
<h2 style="background-color:rgba(255,
99, 71, 0.6);">rgba(255, 99, 71, 0.6)</h2>
<h2 style="background-color:rgba(255,
99, 71, 0.8);">rgba(255, 99, 71, 0.8)</h2>
<h2 style="background-color:rgba(255,
99, 71, 1);">rgba(255, 99, 71, 1)</h2>

</body>
</html>

CSS HEX Colors

A hexadecimal color is specified with: #RRGGBB, where the RR (red), GG (green) and

BB (blue) hexadecimal integers specify the components of the color.

HEX Value

In CSS, a color can be specified using a hexadecimal value in the form:

#rrggbb

Where rr (red), gg (green) and bb (blue) are hexadecimal values between 00 and

ff (same as decimal 0-255).

For example, #ff0000 is displayed as red, because red is set to its highest value (ff) and

the others are set to the lowest value (00).

To display black, set all values to 00, like this: #000000.

To display white, set all values to ff, like this: #ffffff.

The 3-digit hex code is a shorthand for some 6-digit hex codes.

The 3-digit hex code has the following form:

#rgb

Where r, g, and b represent the red, green, and blue components with values between

0 and f.

The 3-digit hex code can only be used when both the values (RR, GG, and BB) are the

same for each component. So, if we have #ff00cc, it can be written like this: #f0c.

Example 1 HEX Colors Example 2 HEX Colors
<!DOCTYPE html>
<html>
<body>

<h1>Specify colors using HEX values</h1>

<h2 style="background-
color:#ff0000;">#ff0000</h2>
<h2 style="background-
color:#0000ff;">#0000ff</h2>
<h2 style="background-
color:#3cb371;">#3cb371</h2>
<h2 style="background-
color:#ee82ee;">#ee82ee</h2>
<h2 style="background-
color:#ffa500;">#ffa500</h2>
<h2 style="background-
color:#6a5acd;">#6a5acd</h2>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: #fc9; /* same as
#ffcc99 */
}

h1 {
 color: #f0f; /* same as #ff00ff */
}

p {
 color: #b58; /* same as #bb5588 */
}
</style>
</head>
<body>

<h1>CSS 3-digit Hex Code</h1>
<p>This is a paragraph.</p>

</body>
</html>

CSS HSL Colors

HSL stands for hue, saturation, and lightness.

HSL Value

hsl(hue, saturation, lightness)

Hue is a degree on the color wheel from 0 to 360. 0 is red, 120 is green, and 240 is blue.

Saturation is a percentage value. 0% means a shade of gray, and 100% is the full color.

Lightness is also a percentage. 0% is black, 50% is neither light or dark, 100% is white

HSLA Value

HSLA color values are an extension of HSL color values with an alpha channel - which

specifies the opacity for a color.

An HSLA color value is specified with:

hsla (hue, saturation, lightness, alpha)

The alpha parameter is a number between 0.0 (fully transparent) and 1.0 (not

transparent at all)

Example Using HSL Colors Example Using HSLA Colors
<!DOCTYPE html>
<html>
<body>

<h1>Specify colors using HSL values</h1>

<h2 style="background-color:hsl(0, 100%,
50%);">hsl(0, 100%, 50%)</h2>
<h2 style="background-color:hsl(240,
100%, 50%);">hsl(240, 100%, 50%)</h2>
<h2 style="background-color:hsl(147, 50%,
47%);">hsl(147, 50%, 47%)</h2>
<h2 style="background-color:hsl(300,
76%, 72%);">hsl(300, 76%, 72%)</h2>
<h2 style="background-color:hsl(39, 100%,
50%);">hsl(39, 100%, 50%)</h2>
<h2 style="background-color:hsl(248,
53%, 58%);">hsl(248, 53%, 58%)</h2>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<h1>Make transparent colors with
HSLA</h1>

<h2 style="background-color:hsla(9, 100%,
64%, 0);">hsla(9, 100%, 64%, 0)</h2>
<h2 style="background-color:hsla(9, 100%,
64%, 0.2);">hsla(9, 100%, 64%, 0.2)</h2>
<h2 style="background-color:hsla(9, 100%,
64%, 0.4);">hsla(9, 100%, 64%, 0.4)</h2>
<h2 style="background-color:hsla(9, 100%,
64%, 0.6);">hsla(9, 100%, 64%, 0.6)</h2>
<h2 style="background-color:hsla(9, 100%,
64%, 0.8);">hsla(9, 100%, 64%, 0.8)</h2>
<h2 style="background-color:hsla(9, 100%,
64%, 1);">hsla(9, 100%, 64%, 1)</h2>

</body>
</html>

CSS Background

CSS background property is used to define the background effects on element. There

are 5 CSS background properties that affects the HTML elements:

1. background-color

2. background-image

3. background-repeat

4. background-attachment

5. background-position

1) CSS background-color

The background-color property is used to specify the background color of the element.

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
h1 {
 background-color: green;
}

div {
 background-color: lightblue;
}

p {
 background-color: yellow;
}
</style>
</head>
<body>

<h1>CSS background-color example!</h1>
<div>
This is a text inside a div element.
<p>This paragraph has its own
background color.</p>
We are still in the div element.
</div>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-color: lightblue;
}
h2,p{
 background-color: #b0d4de;
}
</style>
</head>
<body>
<h2>My first CSS page.</h2>
<p>Hello Javatpoint. This is an example of
CSS background-color.</p>
</body>
</html>

Opacity / Transparency

The opacity property specifies the opacity/transparency of an element. It can take a

value from 0.0 - 1.0. The lower value, the more transparent:

Example 1 Example 2
<!DOCTYPE html> <!DOCTYPE html>

<html>
<head>
<style>
div {
 background-color: green;
}

div.first {
 opacity: 0.1;
}

div.second {
 opacity: 0.3;
}

div.third {
 opacity: 0.6;
}
</style>
</head>
<body>
<div class="first">
 <h1>opacity 0.1</h1>
</div>

<div class="second">
 <h1>opacity 0.3</h1>
</div>

<div class="third">
 <h1>opacity 0.6</h1>
</div>

<div>
 <h1>opacity 1 (default)</h1>
</div>

</body>
</html>

<html>
<head>
<style>
div {
 background: rgb(0, 128, 0);
}

div.first {
 background: rgba(0, 128, 0, 0.1);
}

div.second {
 background: rgba(0, 128, 0, 0.3);
}

div.third {
 background: rgba(0, 128, 0, 0.6);
}
</style>
</head>
<body>

<h1>Transparent Boxes 2</h1>

<p>Result with opacity:</p>

<div style="opacity:0.1;">
 <h1>10% opacity</h1>
</div>

<div style="opacity:0.3;">
 <h1>30% opacity</h1>
</div>

<div style="opacity:0.6;">
 <h1>60% opacity</h1>
</div>

<div>
 <h1>opacity 1</h1>
</div>

<p>Result with rgba():</p>

<div class="first">
 <h1>10% opacity</h1>
</div>

<div class="second">
 <h1>30% opacity</h1>
</div>

<div class="third">
 <h1>60% opacity</h1>
</div>

<div>
 <h1>default</h1>
</div>

</body>
</html>

2) CSS background-image

The background-image property is used to set an image as a background of an

element. By default the image covers the entire element. You can set the background

image for a page like this.

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
body {
background-image: url("paper1.gif");
margin-left:100px;
}
</style>
</head>
<body>
<h1>Hello pictacademy.com</h1>
</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("paper.gif");
}
</style>
</head>
<body>

<h1>Hello World!</h1>

<p>This page has an image as the
background!</p>

</body>
</html>

3) CSS background-repeat

By default, the background-image property repeats the background image horizontally

and vertically. Some images are repeated only horizontally or vertically.

The background looks better if the image repeated horizontally only.

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("gradient-
bg.png");
 background-repeat: repeat-x;
}
</style>
</head>
<body>
<h1>Hello
LearnFromTheExperts.com</h1>
</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("gradient-
bg.png");
 background-repeat: repeat-y;
}
</style>
</head>
<body>
<h1>Hello Learnfromtheexperts.com</h1>
</body>
</html>

Example 3
<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image:
url("gradient_bg.png");
 background-repeat: repeat-x;
}
</style>
</head>
<body>

<h1>Hello World!</h1>
<p>Here, a background image is repeated
only horizontally!</p>

</body>
</html>

Example 4
<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("img_tree.png");
 background-repeat: no-repeat;
}
</style>
</head>
<body>

<h1>Hello World!</h1>
<p>W3Schools background image
example.</p>
<p>The background image only shows
once, but it is disturbing the reader!</p>

</body>
</html>

4) CSS background-attachment

The background-attachment property is used to specify if the background image is

fixed or scroll with the rest of the page in browser window. If you set fixed the

background image then the image will not move during scrolling in the browser.

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("img_tree.png");
 background-repeat: no-repeat;
 background-position: right top;
 margin-right: 200px;
 background-attachment: fixed;
}
</style>
</head>
<body>

<h1>The background-attachment
Property</h1>

<p>The background-attachment property
specifies whether the background image
should scroll or be fixed (will not scroll
with the rest of the page).</p>

<p>Tip: If you do not see
any scrollbars, try to resize the browser
window.</p>

<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>

<!DOCTYPE html>
<html>
<head>
<style>
body {
 background-image: url("img_tree.png");
 background-repeat: no-repeat;
 background-position: right top;
 margin-right: 200px;
 background-attachment: scroll;
}
</style>
</head>
<body>

<h1>The background-attachment
Property</h1>

<p>The background-attachment property
specifies whether the background image
should scroll or be fixed (will not scroll
with the rest of the page).</p>

<p>Tip: If you do not see
any scrollbars, try to resize the browser
window.</p>

<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>

<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>
<p>The background-image is fixed. Try to
scroll down the page.</p>

</body>
</html>

<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>
<p>The background-image scrolls. Try to
scroll down the page.</p>

</body>
</html>

5) CSS background-position

The background-position property is used to define the initial position of the

background image. By default, the background image is placed on the top-left of the

webpage. You can set the following positions:

1. center

2. top

3. bottom

4. left

5. right

Example

<!DOCTYPE html>

<html>

<head>

<style>

body {

background: white url('good-morning.jpg');

background-repeat: no-repeat;

background-attachment: fixed;

background-position: center;

}

</style>

</head>

<body>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>This is a fixed background-image. Scroll down the page.</p>

<p>If you do not see any scrollbars, Resize the browser window.</p>

</body>

</html>

CSS background - Shorthand property

To shorten the code, it is also possible to specify all the background properties in one single property.

This is called a shorthand property.

Example

<!DOCTYPE html>

<html>

<head>

<style>

body {

 background: #ffffff url("img_tree.png") no-repeat right top;

 margin-right: 200px;

}

</style>

</head>

<body>

<h1>The background Property</h1>

<p>The background property is a shorthand property for specifying all the background

properties in one declaration.</p>

<p>Here, the background image is only shown once, and it is also positioned in the top-

right corner.</p>

<p>We have also added a right margin, so that the text will not write over the

background image.</p>

</body>

</html>

CSS Border

CSS border is a key property used to characterize and style the borders around HTML

components. Borders assume a vital part in website composition, assisting with

making separation, emphasis, and stylish allure. In CSS, you can utilize a few border-

related properties to control the style, variety, size, and shape of these borders.

CSS Border Properties

The CSS border properties are utilized to determine the style, variety, width, and ebb

and flow of the borders of a component. These properties include:

1. border-style

2. border-color

3. border-width

4. border-radius

1) CSS border-style

The Border style property is used to specify the border type which you want to display

on the web page.

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
 <style>
 .border-example {
 width: 150px;
 height: 30px;
 margin: 10px;
 padding: 10px;
 }

 .dotted {

<!DOCTYPE html>
<html>
<head>
<style>
p.dotted {border-style: dotted;}
p.dashed {border-style: dashed;}
p.solid {border-style: solid;}
p.double {border-style: double;}
p.groove {border-style: groove;}
p.ridge {border-style: ridge;}
p.inset {border-style: inset;}
p.outset {border-style: outset;}

Value Description
none It doesn't define any border.
dotted It is used to define a dotted border.
dashed It is used to define a dashed border.
solid It is used to define a solid border.
double It defines two borders wIth the same border-width value.
groove It defines a 3d grooved border. effect is generated according to

border-color value.
ridge It defines a 3d ridged border. effect is generated according to border-

color value.
inset It defines a 3d inset border. effect is generated according to border-

color value.
outset It defines a 3d outset border. effect is generated according to border-

color value.

 border: 2px dotted #FFA500;
 }

 .dashed {
 border: 2px dashed #008000;
 }

 .solid {
 border: 2px solid #000;
 }

 .double {
 border: 4px double #FF0000;
 }

 .groove {
 border: 3px groove #3333FF;
 }

 .ridge {
 border: 3px ridge #660066;
 }

 .inset {
 border: 3px inset #006600;
 }

 .outset {
 border: 3px outset #990000;
 }
 </style>
</head>
<body>
 <div class = "border-
example dotted"> Dotted Border </div>
 <div class = "border-
example dashed"> Dashed Border </div>
 <div class = "border-
example solid"> Solid Border </div>
 <div class = "border-
example double"> Double Border </div>
 <div class = "border-
example groove"> Groove Border </div>

p.none {border-style: none;}
p.hidden {border-style: hidden;}
p.mix {border-style: dotted dashed solid
double;}
</style>
</head>
<body>

<h2>The border-style Property</h2>
<p>This property specifies what kind of
border to display:</p>

<p class="dotted">A dotted border.</p>
<p class="dashed">A dashed border.</p>
<p class="solid">A solid border.</p>
<p class="double">A double border.</p>
<p class="groove">A groove border.</p>
<p class="ridge">A ridge border.</p>
<p class="inset">An inset border.</p>
<p class="outset">An outset border.</p>
<p class="none">No border.</p>
<p class="hidden">A hidden border.</p>
<p class="mix">A mixed border.</p>

</body>
</html>

 <div class = "border-
example ridge"> Ridge Border </div>
 <div class "border-
example inset"> Inset Border </div>
 <div class = "border-
example outset"> Outset Border </div>
</body>
</html>

CSS Border Width

The border-width property specifies the width of the four borders.

The width can be set as a specific size (in px, pt, cm, em, etc) or by using one of the

three pre-defined values: thin, medium, or thick:

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
p.one {
 border-style: solid;
 border-width: 5px;
}

p.two {
 border-style: solid;
 border-width: medium;
}

p.three {
 border-style: dotted;
 border-width: 2px;
}

p.four {
 border-style: dotted;
 border-width: thick;
}

p.five {
 border-style: double;
 border-width: 15px;
}

<!DOCTYPE html>
<html>
<head>
<style>
p.one {
 border-style: solid;
 border-width: 5px 20px; /* 5px top and
bottom, 20px on the sides */
}

p.two {
 border-style: solid;
 border-width: 20px 5px; /* 20px top and
bottom, 5px on the sides */
}

p.three {
 border-style: solid;
 border-width: 25px 10px 4px 35px; /*
25px top, 10px right, 4px bottom and 35px
left */
}
</style>
</head>
<body>

<h2>The border-width Property</h2>

p.six {
 border-style: double;
 border-width: thick;
}
</style>
</head>
<body>

<h2>The border-width Property</h2>
<p>This property specifies the width of
the four borders:</p>

<p class="one">Some text.</p>
<p class="two">Some text.</p>
<p class="three">Some text.</p>
<p class="four">Some text.</p>
<p class="five">Some text.</p>
<p class="six">Some text.</p>

<p>Note: The "border-width"
property does not work if it is used alone.
Always specify the "border-style"
property to set the borders first.</p>

</body>
</html>

<p>The border-width property can have
from one to four values (for the top
border, right border, bottom border, and
the left border):</p>

<p class="one">Some text.</p>
<p class="two">Some text.</p>
<p class="three">Some text.</p>

</body>
</html>

CSS Border Color

The border-color property is used to set the color of the four borders.

• name - specify a color name, like "red"

• HEX - specify a HEX value, like "#ff0000"

• RGB - specify a RGB value, like "rgb(255,0,0)"

• HSL - specify a HSL value, like "hsl(0, 100%, 50%)"

• transparent

Example 1 Example 2
<!DOCTYPE html>
<html>
<head>
<style>
p.one {
 border-style: solid;
 border-color: red;

<!DOCTYPE html>
<html>
<head>
<style>
p.one {
 border-style: solid;

}

p.two {
 border-style: solid;
 border-color: green;
}

p.three {
 border-style: dotted;
 border-color: blue;
}
</style>
</head>
<body>

<h2>The border-color Property</h2>
<p>This property specifies the color of
the four borders:</p>

<p class="one">A solid red border</p>
<p class="two">A solid green border</p>
<p class="three">A dotted blue border</p>

<p>Note: The "border-color"
property does not work if it is used alone.
Use the "border-style" property to set the
borders first.</p>

</body>
</html>

 border-color: red green blue yellow; /*
red top, green right, blue bottom and
yellow left */
}
</style>
</head>
<body>

<h2>The border-color Property</h2>
<p>The border-color property can have
from one to four values (for the top
border, right border, bottom border, and
the left border):</p>

<p class="one">A solid multicolor
border</p>

</body>
</html>

CSS Border - Individual Sides

From the examples on the previous pages, you have seen that it is possible to specify a

different border for each side.

In CSS, there are also properties for specifying each of the borders (top, right, bottom,

and left):

Example

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border-top-style: dotted;

 border-right-style: solid;

 border-bottom-style: dotted;

 border-left-style: solid;

}

</style>

</head>

<body>

<h2>Individual Border Sides</h2>

<p>2 different border styles.</p>

</body>

</html>

CSS Border - Shorthand Property

Like you saw in the previous page, there are many properties to consider when dealing

with borders.

To shorten the code, it is also possible to specify all the individual border properties in

one property.

The border property is a shorthand property for the following individual border

properties:

• border-width

• border-style (required)

• border-color

Example

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border: 5px solid red;

}

</style>

</head>

<body>

<h2>The border Property</h2>

<p>This property is a shorthand property for border-width, border-style, and border-

color.</p>

</body>

</html>

CSS Rounded Borders

The border-radius property is used to add rounded borders to an element:

Example

<!DOCTYPE html>

<html>

<head>

<style>

p.normal {

 border: 2px solid red;

 padding: 5px;

}

p.round1 {

 border: 2px solid red;

 border-radius: 5px;

 padding: 5px;

}

p.round2 {

 border: 2px solid red;

 border-radius: 8px;

 padding: 5px;

}

p.round3 {

 border: 2px solid red;

 border-radius: 12px;

 padding: 5px;

}

</style>

</head>

<body>

<h2>The border-radius Property</h2>

<p>This property is used to add rounded borders to an element:</p>

<p class="normal">Normal border</p>

<p class="round1">Round border</p>

<p class="round2">Rounder border</p>

<p class="round3">Roundest border</p>

</body>

</html>

CSS Margins

Margins are used to create space around elements, outside of any defined borders.

<!DOCTYPE html>
<html>
<head>
<style>
div {
 margin: 70px;
 border: 1px solid #4CAF50;

}
</style>
</head>
<body>
<h2>CSS Margins</h2>
<div>This element has a margin of 70px.</div>
</body>
</html>
<!DOCTYPE html>
<html>
<head>
<style>
div {
 border: 1px solid black;
 margin-top: 100px;
 margin-bottom: 100px;
 margin-right: 150px;
 margin-left: 80px;
 background-color: lightblue;
}
</style>
</head>
<body>

<h2>Using individual margin properties</h2>

<div>This div element has a top margin of 100px, a right margin of 150px, a bottom
margin of 100px, and a left margin of 80px.</div>

</body>
</html>

Margin - Shorthand Property

To shorten the code, it is possible to specify all the margin properties in one property.

<!DOCTYPE html>
<html>
<head>
<style>
div {
 border: 1px solid black;
 margin: 25px 50px 75px 100px;
 background-color: lightblue;
}
</style>

</head>
<body>
<h2>The margin shorthand property - 4 values</h2>
<div>This div element has a top margin of 25px, a right margin of 50px, a bottom margin of 75px, and a
left margin of 100px.</div>

<hr>
</body>
</html>

CSS Padding

Padding is used to create space around an element's content, inside of any defined

borders.

<!DOCTYPE html>
<html>
<head>
<style>
div {
 padding: 70px;
 border: 1px solid #4CAF50;
}
</style>
</head>
<body>

<h2>CSS Padding</h2>
<div>This element has a padding of
70px.</div>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
div {
 border: 1px solid black;
 background-color: lightblue;
 padding-top: 50px;
 padding-right: 30px;
 padding-bottom: 50px;
 padding-left: 80px;
}
</style>
</head>
<body>
<h2>Using individual padding
properties</h2>
<div>This div element has a top padding
of 50px, a right padding of 30px, a bottom
padding of 50px, and a left padding of
80px.</div>
</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
div {
 border: 1px solid black;
 padding: 25px 50px 75px 100px;
 background-color: lightblue;

}
</style>
</head>
<body>
<h2>The padding shorthand property - 4 values</h2>
<div>This div element has a top padding of 25px, a right padding of 50px, a bottom
padding of 75px, and a left padding of 100px.</div>
</body>
</html>

CSS Height, Width and Max-width

The CSS height and width properties are used to set the height and width of an

element.

The CSS max-width property is used to set the maximum width of an element.
The height and width properties may have the following values:

• auto - This is default. The browser calculates the height and width

• length - Defines the height/width in px, cm, etc.

• % - Defines the height/width in percent of the containing block

• initial - Sets the height/width to its default value

• inherit - The height/width will be inherited from its parent value

<!DOCTYPE html>
<html>
<head>
<style>
div {
 height: 50px;
 width: 100%;
 border: 1px solid #4CAF50;
}
</style>
</head>
<body>

<h2>CSS height and width
properties</h2>

<div>This div element has a height of 50
pixels and a width of 100%.</div>

</body>

<!DOCTYPE html>
<html>
<head>
<style>
div {
 height: 200px;
 width: 50%;
 background-color: powderblue;
}
</style>
</head>
<body>

<h2>Set the height and width of an
element</h2>

<div>This div element has a height of
200px and a width of 50%.</div>

</body>

</html> </html>
The max-width property is used to set the maximum width of an element.

The max-width can be specified in length values, like px, cm, etc., or in percent (%) of

the containing block, or set to none (this is default. Means that there is no maximum

width).

<!DOCTYPE html>
<html>
<head>
<style>
div {
 max-width: 500px;
 height: 100px;
 background-color: powderblue;
}
</style>
</head>

<body>

<h2>Set the max-width of an
element</h2>

<div>This div element has a height of
100px and a max-width of 500px.</div>

<p>Resize the browser window to see the
effect.</p>

</body>
</html>

CSS Outline

An outline is a line drawn outside the element's border.

<!DOCTYPE html>

<html>

<head>

<style>

p {

 border: 2px solid black;

 outline: #4CAF50 solid 10px;

 margin: auto;

 padding: 20px;

 text-align: center;

}

</style>

</head>

<body>

<h2>CSS Outline</h2>

<p>This element has a 2px black border and a green outline with a width of 10px.</p>

</body>

</html>

<!DOCTYPE html>
<html>
<head>
<style>
p {outline-color:red;}

p.dotted {outline-style: dotted;}
p.dashed {outline-style: dashed;}
p.solid {outline-style: solid;}
p.double {outline-style: double;}
p.groove {outline-style: groove;}
p.ridge {outline-style: ridge;}
p.inset {outline-style: inset;}
p.outset {outline-style: outset;}
</style>
</head>
<body>

<h2>The outline-style Property</h2>

<p class="dotted">A dotted outline</p>
<p class="dashed">A dashed outline</p>
<p class="solid">A solid outline</p>
<p class="double">A double outline</p>
<p class="groove">A groove outline. The
effect depends on the outline-color
value.</p>
<p class="ridge">A ridge outline. The
effect depends on the outline-color
value.</p>
<p class="inset">An inset outline. The
effect depends on the outline-color
value.</p>

<!DOCTYPE html>
<html>
<head>
<style>
p.ex1 {
 border: 1px solid black;
 outline-style: solid;
 outline-color: red;
 outline-width: thin;
}

p.ex2 {
 border: 1px solid black;
 outline-style: solid;
 outline-color: red;
 outline-width: medium;
}

p.ex3 {
 border: 1px solid black;
 outline-style: solid;
 outline-color: red;
 outline-width: thick;
}

p.ex4 {
 border: 1px solid black;
 outline-style: solid;
 outline-color: red;
 outline-width: 4px;
}
</style>
</head>
<body>

<p class="outset">An outset outline. The
effect depends on the outline-color
value.</p>

</body>
</html>

<h2>The outline-width Property</h2>

<p class="ex1">A thin outline.</p>
<p class="ex2">A medium outline.</p>
<p class="ex3">A thick outline.</p>
<p class="ex4">A 4px thick outline.</p>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
p.ex1 {
 border: 2px solid black;
 outline-style: solid;
 outline-color: red;
}

p.ex2 {
 border: 2px solid black;
 outline-style: dotted;
 outline-color: blue;
}

p.ex3 {
 border: 2px solid black;
 outline-style: outset;
 outline-color: grey;
}
</style>
</head>
<body>

<h2>The outline-color Property</h2>
<p>The outline-color property is used to
set the color of the outline.</p>

<p class="ex1">A solid red outline.</p>
<p class="ex2">A dotted blue outline.</p>
<p class="ex3">An outset grey outline.</p>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
p.ex1 {outline: dashed;}
p.ex2 {outline: dotted red;}
p.ex3 {outline: 5px solid yellow;}
p.ex4 {outline: thick ridge pink;}
</style>
</head>
<body>

<h2>The outline Property</h2>

<p class="ex1">A dashed outline.</p>
<p class="ex2">A dotted red outline.</p>
<p class="ex3">A 5px solid yellow
outline.</p>
<p class="ex4">A thick ridge pink
outline.</p>

</body>
</html>

CSS Text

CSS has a lot of properties for formatting text.

<!DOCTYPE html>
<html>
<head>
<style>
div {
 border: 1px solid gray;
 padding: 8px;
}

h1 {
 text-align: center;
 text-transform: uppercase;
 color: #4CAF50;
}

p {
 text-indent: 50px;
 text-align: justify;
 letter-spacing: 3px;
}

a {
 text-decoration: none;
 color: #008CBA;
}
</style>
</head>
<body>

<div>
 <h1>text formatting</h1>
 <p>This text is styled with some of the text formatting properties. The heading uses
the text-align, text-transform, and color properties.
 The paragraph is indented, aligned, and the space between characters is specified.
The underline is removed from this colored
 "Try it Yourself"
link.</p>
</div>

</body>

</html>

CSS Icons

The simplest way to add an icon to your HTML page, is with an icon library, such as

Font Awesome.

Add the name of the specified icon class to any inline HTML element

(like <i> or).

All the icons in the icon libraries below, are scalable vectors that can be customized

with CSS (size, color, shadow, etc.)

Font Awesome Icons

To use the Font Awesome icons, go to fontawesome.com, sign in, and get a code to add

in the <head> section of your HTML page:

<script src="https://kit.fontawesome.com/yourcode.js"

crossorigin="anonymous"></script>

<!DOCTYPE html>
<html>
<head>
<script src="https://kit.fontawesome.com/a076d05399.js" crossorigin="anonymous"><
/script>
</head>
<body>
<i class="fas fa-cloud"></i>
<i class="fas fa-heart"></i>
<i class="fas fa-car"></i>
<i class="fas fa-file"></i>
<i class="fas fa-bars"></i>
</body>
</html>

Bootstrap Icons

To use the Bootstrap glyphicons, add the following line inside the <head> section of

your HTML page:

<link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bo

otstrap.min.css">
</head>
<body>

<i class="glyphicon glyphicon-cloud"></i>
<i class="glyphicon glyphicon-remove"></i>
<i class="glyphicon glyphicon-user"></i>
<i class="glyphicon glyphicon-envelope"></i>
<i class="glyphicon glyphicon-thumbs-up"></i>

</body>
</html>

Google Icons

To use the Google icons, add the following line inside the <head> section of your HTML

page:

<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">

<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons"
>
</head>
<body>
<i class="material-icons">cloud</i>
<i class="material-icons">favorite</i>
<i class="material-icons">attachment</i>
<i class="material-icons">computer</i>
<i class="material-icons">traffic</i>
</body>
</html>

Styling Links

Links can be styled with any CSS property (e.g. color, font-family, background, etc.)

The four links states are:

• a:link - a normal, unvisited link

• a:visited - a link the user has visited

• a:hover - a link when the user mouses over it

• a:active - a link the moment it is clicked

• <!DOCTYPE html>
• <html>
• <head>
• <style>
• /* unvisited link */
• a:link {
• color: red;
• }
•
• /* visited link */
• a:visited {
• color: green;
• }
•
• /* mouse over link */
• a:hover {
• color: hotpink;
• }
•
• /* selected link */
• a:active {
• color: blue;
• }
• </style>
• </head>
• <body>
•
• <h2>Styling a link depending on state</h2>
•
• <p>This is a link</p>
• <p>Note: a:hover MUST come after a:link and a:visited in the CSS

definition in order to be effective.</p>
• <p>Note: a:active MUST come after a:hover in the CSS definition in order

to be effective.</p>
•
• </body>
• </html>

<!DOCTYPE html>
<html>
<head>
<style>
a:link, a:visited {
 background-color: white;

 color: black;
 border: 2px solid green;
 padding: 10px 20px;
 text-align: center;
 text-decoration: none;
 display: inline-block;
}

a:hover, a:active {
 background-color: green;
 color: white;
}
</style>
</head>
<body>

<h2>Link Button</h2>

This is a link

</body>
</html>

HTML Lists and CSS List Properties

In HTML, there are two main types of lists:

• unordered lists () - the list items are marked with bullets

• ordered lists () - the list items are marked with numbers or letters

The CSS list properties allow you to:

• Set different list item markers for ordered lists

• Set different list item markers for unordered lists

• Set an image as the list item marker

• Add background colors to lists and list items

Different List Item Markers

The list-style-type property specifies the type of list item marker.

<!DOCTYPE html>
<html>
<head>

<!DOCTYPE html>
<html>
<head>

<style>
ul.a {
 list-style-type: circle;
}

ul.b {
 list-style-type: square;
}

ol.c {
 list-style-type: upper-roman;
}

ol.d {
 list-style-type: lower-alpha;
}
</style>
</head>
<body>

<h2>The list-style-type Property</h2>

<p>Example of unordered lists:</p>
<ul class="a">
 Coffee
 Tea
 Coca Cola

<ul class="b">
 Coffee
 Tea
 Coca Cola

<p>Example of ordered lists:</p>
<ol class="c">
 Coffee
 Tea
 Coca Cola

<ol class="d">
 Coffee

<style>
ul {
 list-style: square inside
url("sqpurple.gif");
}
</style>
</head>
<body>

<h2>The list-style Property</h2>

<p>The list-style property is a shorthand
property, which is used to set all the list
properties in one declaration.</p>

 Coffee
 Tea
 Coca Cola

</body>
</html>

 Tea
 Coca Cola

</body>
</html>

CSS Tables

The look of an HTML table can be greatly improved with CSS:

<!DOCTYPE html>
<html>
<head>
<style>
#customers {
 font-family: Arial, Helvetica, sans-serif;
 border-collapse: collapse;
 width: 100%;
}

#customers td, #customers th {
 border: 1px solid #ddd;
 padding: 8px;
}

#customers tr:nth-child(even){background-color: #f2f2f2;}

#customers tr:hover {background-color: #ddd;}

#customers th {
 padding-top: 12px;
 padding-bottom: 12px;
 text-align: left;
 background-color: #04AA6D;
 color: white;
}
</style>
</head>
<body>

<h1>A Fancy Table</h1>

<table id="customers">
 <tr>
 <th>Company</th>

 <th>Contact</th>
 <th>Country</th>
 </tr>
 <tr>
 <td>Alfreds Futterkiste</td>
 <td>Maria Anders</td>
 <td>Germany</td>
 </tr>
 <tr>
 <td>Berglunds snabbköp</td>
 <td>Christina Berglund</td>
 <td>Sweden</td>
 </tr>
 <tr>
 <td>Centro comercial Moctezuma</td>
 <td>Francisco Chang</td>
 <td>Mexico</td>
 </tr>
 <tr>
 <td>Ernst Handel</td>
 <td>Roland Mendel</td>
 <td>Austria</td>
 </tr>
 <tr>
 <td>Island Trading</td>
 <td>Helen Bennett</td>
 <td>UK</td>
 </tr>
 <tr>
 <td>Königlich Essen</td>
 <td>Philip Cramer</td>
 <td>Germany</td>
 </tr>
 <tr>
 <td>Laughing Bacchus Winecellars</td>
 <td>Yoshi Tannamuri</td>
 <td>Canada</td>
 </tr>
 <tr>
 <td>Magazzini Alimentari Riuniti</td>
 <td>Giovanni Rovelli</td>
 <td>Italy</td>
 </tr>
 <tr>

 <td>North/South</td>
 <td>Simon Crowther</td>
 <td>UK</td>
 </tr>
 <tr>
 <td>Paris spécialités</td>
 <td>Marie Bertrand</td>
 <td>France</td>
 </tr>
</table>

</body>
</html>

CSS Layout - The position Property

The position property specifies the type of positioning method used for an element.

There are five different position values:

• static

• relative

• fixed

• absolute

• sticky

Elements are then positioned using the top, bottom, left, and right properties. However,

these properties will not work unless the position property is set first. They also work

differently depending on the position value.

<!DOCTYPE html>
<html>
<head>
<style>
div.static {
 position: static;
 border: 3px solid #73AD21;
}
</style>
</head>
<body>

<!DOCTYPE html>
<html>
<head>
<style>
div.relative {
 position: relative;
 left: 30px;
 border: 3px solid #73AD21;
}
</style>
</head>

<h2>position: static;</h2>

<p>An element with position: static; is not
positioned in any special way; it is always
positioned according to the normal flow
of the page:</p>

<div class="static">
This div element has position: static;
</div>

</body>
</html>

<body>

<h2>position: relative;</h2>

<p>An element with position: relative; is
positioned relative to its normal
position:</p>

<div class="relative">
This div element has position: relative;
</div>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
div.fixed {
 position: fixed;
 bottom: 0;
 right: 0;
 width: 300px;
 border: 3px solid #73AD21;
}
</style>
</head>
<body>

<h2>position: fixed;</h2>

<p>An element with position: fixed; is
positioned relative to the viewport, which
means it always stays in the same place
even if the page is scrolled:</p>

<div class="fixed">
This div element has position: fixed;
</div>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
div.relative {
 position: relative;
 width: 400px;
 height: 200px;
 border: 3px solid #73AD21;
}

div.absolute {
 position: absolute;
 top: 80px;
 right: 0;
 width: 200px;
 height: 100px;
 border: 3px solid #73AD21;
}
</style>
</head>
<body>

<h2>position: absolute;</h2>

<p>An element with position: absolute; is
positioned relative to the nearest
positioned ancestor (instead of
positioned relative to the viewport, like
fixed):</p>

<div class="relative">This div element has
position: relative;
 <div class="absolute">This div element
has position: absolute;</div>
</div>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
div.sticky {
 position: -webkit-sticky;
 position: sticky;
 top: 0;
 padding: 5px;
 background-color: #cae8ca;
 border: 2px solid #4CAF50;
}
</style>
</head>

<body>

<p>Try to scroll inside this frame
to understand how sticky positioning
works.</p>

<div class="sticky">I am sticky!</div>

<div style="padding-bottom:2000px">
 <p>In this example, the sticky element
sticks to the top of the page (top: 0),
when you reach its scroll position.</p>
 <p>Scroll back up to remove the
stickyness.</p>
 <p>Some text to enable scrolling..
Lorem ipsum dolor sit amet, illum
definitiones no quo, maluisset
concludaturque et eum, altera fabulas ut
quo. Atqui causae gloriatur ius te, id
agam omnis evertitur eum. Affert
laboramus repudiandae nec et. Inciderint
efficiantur his ad. Eum no molestiae
voluptatibus.</p>
 <p>Some text to enable scrolling..
Lorem ipsum dolor sit amet, illum
definitiones no quo, maluisset
concludaturque et eum, altera fabulas ut
quo. Atqui causae gloriatur ius te, id
agam omnis evertitur eum. Affert
laboramus repudiandae nec et. Inciderint
efficiantur his ad. Eum no molestiae
voluptatibus.</p>
</div>

</body>

</html>
The z-index Property

When elements are positioned, they can overlap other elements.

The z-index property specifies the stack order of an element (which element should be

placed in front of, or behind, the others).

An element can have a positive or negative stack order:

<!DOCTYPE html>
<html>
<head>
<style>
img {
 position: absolute;
 left: 0px;
 top: 0px;
 z-index: -1;
}
</style>
</head>
<body>

<h1>This is a heading</h1>

<p>Because the image has a z-index of -
1, it will be placed behind the text.</p>

</body>
</html>

<!DOCTYPE html>
<html>
<head>
<style>
.container {
 position: relative;
}

.black-box {
 position: relative;
 z-index: 1;
 border: 2px solid black;
 height: 100px;
 margin: 30px;
}

.gray-box {
 position: absolute;
 z-index: 3; /* gray box will be above
both green and black box */
 background: lightgray;
 height: 60px;
 width: 70%;
 left: 50px;
 top: 50px;
}

.green-box {
 position: absolute;
 z-index: 2; /* green box will be above
black box */
 background: lightgreen;
 width: 35%;
 left: 270px;
 top: -15px;
 height: 100px;

}
</style>
</head>
<body>

<h1>Z-index Example</h1>

<p>An element with greater stack order
is always above an element with a lower
stack order.</p>

<div class="container">
 <div class="black-box">Black box (z-
index: 1)</div>
 <div class="gray-box">Gray box (z-
index: 3)</div>
 <div class="green-box">Green box (z-
index: 2)</div>
</div>

</body>
</html>

The float Property

The float property is used for positioning and formatting content e.g. let an image float

left to the text in a container.

The float property can have one of the following values:

• left - The element floats to the left of its container

• right - The element floats to the right of its container

• none - The element does not float (will be displayed just where it occurs in the

text). This is default

• inherit - The element inherits the float value of its parent

The clear Property

When we use the float property, and we want the next element below (not on right

or left), we will have to use the clear property.

The clear property specifies what should happen with the element that is next to a

floating element.

The clear property can have one of the following values:

• none - The element is not pushed below left or right floated elements. This is

default

• left - The element is pushed below left floated elements

• right - The element is pushed below right floated elements

• both - The element is pushed below both left and right floated elements

• inherit - The element inherits the clear value from its parent

<!DOCTYPE html>
<html>
<head>
<style>
img {
 float: left;
}
</style>
</head>
<body>

<h2>Float Left</h2>

<p>In this example, the image will float
to the left in the paragraph, and the
text in the paragraph will wrap around
the image.</p>

<p><img src="pineapple.jpg"
alt="Pineapple"
style="width:170px;height:170px;margin-
right:15px;">
Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Phasellus
imperdiet, nulla et dictum interdum,
nisi lorem egestas odio, vitae
scelerisque enim ligula venenatis
dolor. Maecenas nisl est, ultrices nec
congue eget, auctor vitae massa.
Fusce luctus vestibulum augue ut
aliquet. Mauris ante ligula, facilisis sed
ornare eu, lobortis in odio. Praesent
convallis urna a lacus interdum ut
hendrerit risus congue. Nunc sagittis

<!DOCTYPE html>
<html>
<head>
<style>
.div1 {
 float: left;
 padding: 10px;
 border: 3px solid #73AD21;
}

.div2 {
 padding: 10px;
 border: 3px solid red;
}

.div3 {
 float: left;
 padding: 10px;
 border: 3px solid #73AD21;
}

.div4 {
 padding: 10px;
 border: 3px solid red;
 clear: left;
}
</style>
</head>
<body>

dictum nisi, sed ullamcorper ipsum
dignissim ac. In at libero sed nunc
venenatis imperdiet sed ornare turpis.
Donec vitae dui eget tellus gravida
venenatis. Integer fringilla congue eros
non fermentum. Sed dapibus pulvinar
nibh tempor porta. Cras ac leo purus.
Mauris quis diam velit.</p>

</body>
</html>

JavaScript
What is JavaScript

JavaScript (js) is a light-weight object-oriented programming language which is used

by several websites for scripting the webpages. It is an interpreted, full-fledged

programming language that enables dynamic interactivity on websites when applied to

an HTML document. It was introduced in the year 1995 for adding programs to the

webpages in the Netscape Navigator browser. Since then, it has been adopted by all

other graphical web browsers. With JavaScript, users can build modern web

applications to interact directly without reloading the page every time. The traditional

website uses js to provide several forms of interactivity and simplicity.

Although, JavaScript has no connectivity with Java programming language. The name

was suggested and provided in the times when Java was gaining popularity in the

market. In addition to web browsers, databases such as CouchDB and MongoDB uses

JavaScript as their scripting and query language.

Features of JavaScript

There are following features of JavaScript:

1. All popular web browsers support JavaScript as they provide built-in execution

environments.

2. JavaScript follows the syntax and structure of the C programming language.

Thus, it is a structured programming language.

3. JavaScript is a weakly typed language, where certain types are implicitly cast

(depending on the operation).

4. JavaScript is an object-oriented programming language that uses prototypes

rather than using classes for inheritance.

5. It is a light-weighted and interpreted language.

6. It is a case-sensitive language.

7. JavaScript is supportable in several operating systems including, Windows,

macOS, etc.

8. It provides good control to the users over the web browsers.

History of JavaScript

In 1993, Mosaic, the first popular web browser, came into existence. In the year

1994, Netscape was founded by Marc Andreessen. He realized that the web needed to

become more dynamic. Thus, a 'glue language' was believed to be provided to HTML to

make web designing easy for designers and part-time programmers. Consequently, in

1995, the company recruited Brendan Eich intending to implement and embed Scheme

programming language to the browser. But, before Brendan could start, the company

merged with Sun Microsystems for adding Java into its Navigator so that it could

compete with Microsoft over the web technologies and platforms. Now, two languages

were there: Java and the scripting language. Further, Netscape decided to give a

similar name to the scripting language as Java's. It led to 'Javascript'. Finally, in May

1995, Marc Andreessen coined the first code of Javascript named 'Mocha'. Later, the

marketing team replaced the name with 'LiveScript'. But, due to trademark reasons

and certain other reasons, in December 1995, the language was finally renamed to

'JavaScript'. From then, JavaScript came into existence.

Application of JavaScript

JavaScript is used to create interactive websites. It is mainly used for:

o Client-side validation,

o Dynamic drop-down menus,

o Displaying date and time,

o Displaying pop-up windows and dialog boxes (like an alert dialog box, confirm

dialog box and prompt dialog box),

o Displaying clocks etc.

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an HTML page,

or in both.

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section of an

HTML page.

<!DOCTYPE html>
<html>
<head>

<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>
</head>
<body>
<h2>Demo JavaScript in Head</h2>

<p id="demo">A Paragraph</p>
<button type="button" onclick="myFunction()">Try it</button>
</body>
</html>

JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section of an HTML page.

<!DOCTYPE html>
<html>
<body>

<h2>Demo JavaScript in Body</h2>

<p id="demo">A Paragraph</p>

<button type="button" onclick="myFunction()">Try it</button>

<script>
function myFunction() {
 document.getElementById("demo").innerHTML = "Paragraph changed.";
}
</script>

</body>
</html>

External JavaScript file

We can create external JavaScript file and embed it in many html page.

It provides code re usability because single JavaScript file can be used in several html

pages.

An external JavaScript file must be saved by .js extension. It is recommended to embed

all JavaScript files into a single file. It increases the speed of the webpage.

message.js

1. function msg(){

2. alert("Hello Javatpoint");

3. }

index.html

1. <html>

2. <head>

3. <script type="text/javascript" src="message.js"></script>

4. </head>

5. <body>

6. <p>Welcome to JavaScript</p>

7. <form>

8. <input type="button" value="click" onclick="msg()"/>

9. </form>

10. </body>

11. </html>

Advantages of External JavaScript

There will be following benefits if a user creates an external javascript:

1. It helps in the reusability of code in more than one HTML file.

2. It allows easy code readability.

3. It is time-efficient as web browsers cache the external js files, which further

reduces the page loading time.

4. It enables both web designers and coders to work with html and js files

parallelly and separately, i.e., without facing any code conflictions.

5. The length of the code reduces as only we need to specify the location of the js

file.

Disadvantages of External JavaScript

There are the following disadvantages of external files:

1. The stealer may download the coder's code using the url of the js file.

2. If two js files are dependent on one another, then a failure in one file may affect

the execution of the other dependent file.

3. The web browser needs to make an additional http request to get the js code.

4. A tiny to a large change in the js code may cause unexpected results in all its

dependent files.

5. We need to check each file that depends on the commonly created external

javascript file.

6. If it is a few lines of code, then better to implement the internal javascript code.

JavaScript Output

JavaScript can "display" data in different ways:

• Writing into an HTML element, using innerHTML.

• Writing into the HTML output using document.write().

• Writing into an alert box, using window.alert().

• Writing into the browser console, using console.log().

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My First Paragraph</p>

<p id="demo"></p>

<script>
document.getElementById("demo").innerHTML = 5 + 6;
</script>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>
<p>My first paragraph.</p>

<script>
document.write(5 + 6);
</script>

</body>
</html>

<!DOCTYPE html>
<html>
<body>

<h1>My First Web Page</h1>

<!DOCTYPE html>
<html>
<body>

<script>

<p>My first paragraph.</p>

<script>
window.alert(5 + 6);
</script>

</body>
</html>

console.log(5 + 6);
</script>

</body>
</html>

JavaScript Comment

The JavaScript comments are meaningful way to deliver message. It is used to add

information about the code, warnings or suggestions so that end user can easily

interpret the code.

Types of JavaScript Comments

There are two types of comments in JavaScript.

1. Single-line Comment

2. Multi-line Comment

JavaScript Single line Comment

It is represented by double forward slashes (//). It can be used before and after the

statement

<html>

<body>

<script>

var a=10;

var b=20;

var c=a+b;//It adds values of a and b variable

document.write(c);//prints sum of 10 and 20

</script>

</body>

</html>

JavaScript Multi line Comment

It can be used to add single as well as multi line comments. So, it is more convenient.

<html>

<body>

<script>

/* It is multi line comment.

It will not be displayed */

document.write("example of javascript multiline comment");

</script>

</body>

</html>

JavaScript Variables

Variables are Containers for Storing Data

JavaScript Variables can be declared in 4 ways:

• Automatically

• Using var

• Using let

• Using const

• <!DOCTYPE html>
• <html>
• <body>
• <h1>JavaScript Variables</h1>
•
• <p>In this example, x, y, and z are

undeclared.</p>
• <p>They are automatically declared

when first used.</p>
•
• <p id="demo"></p>
•
• <script>
• x = 5;
• y = 6;
• z = x + y;
• document.getElementById("demo").inn

erHTML =

<!DOCTYPE html>
<html>
<body>
<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are
variables.</p>

<p id="demo"></p>

<script>
var x = 5;
var y = 6;
var z = x + y;
document.getElementById("demo").inn
erHTML =
"The value of z is: " + z;
</script>

• "The value of z is: " + z;
• </script>
•
• </body>
• </html>

</body>
</html>

<!DOCTYPE html>
<html>
<body>
<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are
variables.</p>

<p id="demo"></p>

<script>
let x = 5;
let y = 6;
let z = x + y;
document.getElementById("demo").innerHT
ML =
"The value of z is: " + z;
</script>

</body>
</html>

<!DOCTYPE html>
<html>
<body>
<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are
variables.</p>

<p id="demo"></p>

<script>
const x = 5;
const y = 6;
const z = x + y;
document.getElementById("demo").inn
erHTML =
"The value of z is: " + z;
</script>

</body>
</html>

JavaScript Data Types

JavaScript provides different data types to hold different types of values. There are two

types of data types in JavaScript.

1. Primitive data type

2. Non-primitive (reference) data type

JavaScript is a dynamic type language; means you don't need to specify type of the

variable because it is dynamically used by JavaScript engine. You need to use var here

to specify the data type. It can hold any type of values such as numbers, strings etc.

For example:

1. var a=40;//holding number

2. var b="Rahul";//holding string

JavaScript primitive data types

There are five types of primitive data types in JavaScript. They are as follows:

Data Type Description

String represents sequence of characters e.g. "hello"

Number represents numeric values e.g. 100

Boolean represents boolean value either false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

Data Type Description

Object represents instance through which we can access members

Array represents group of similar values

RegExp represents regular expression

JavaScript Operators

JavaScript operators are symbols that are used to perform operations on operands.

For example:

1. var sum=10+20;

Here, + is the arithmetic operator and = is the assignment operator.

There are following types of operators in JavaScript.

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Bitwise Operators

4. Logical Operators

5. Assignment Operators

6. Special Operators

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on the operands. The

following operators are known as JavaScript arithmetic operators.

Operator Description Example

+ Addition 10+20 = 30

- Subtraction 20-10 = 10

* Multiplication 10*20 = 200

/ Division 20/10 = 2

% Modulus (Remainder) 20%10 = 0

++ Increment var a=10; a++; Now a = 11

-- Decrement var a=10; a--; Now a = 9

JavaScript Comparison Operators

The JavaScript comparison operator compares the two operands. The comparison

operators are as follows:

Operator Description Example

== Is equal to 10==20 = false

=== Identical (equal and of same type) 10==20 = false

!= Not equal to 10!=20 = true

!== Not Identical 20!==20 = false

> Greater than 20>10 = true

>= Greater than or equal to 20>=10 = true

< Less than 20<10 = false

<= Less than or equal to 20<=10 = false

JavaScript Bitwise Operators

The bitwise operators perform bitwise operations on operands. The bitwise operators

are as follows:

Operator Description Example

& Bitwise AND (10==20 & 20==33) = false

| Bitwise OR (10==20 | 20==33) = false

^ Bitwise XOR (10==20 ^ 20==33) = false

~ Bitwise NOT (~10) = -10

<< Bitwise Left Shift (10<<2) = 40

>> Bitwise Right Shift (10>>2) = 2

>>> Bitwise Right Shift with Zero (10>>>2) = 2

JavaScript Logical Operators

The following operators are known as JavaScript logical operators.

Operator Description Example

&& Logical AND (10==20 && 20==33) = false

|| Logical OR (10==20 || 20==33) = false

! Logical Not !(10==20) = true

JavaScript Assignment Operators

The following operators are known as JavaScript assignment operators.

Operator Description Example

= Assign 10+10 = 20

+= Add and assign var a=10; a+=20; Now a = 30

-= Subtract and assign var a=20; a-=10; Now a = 10

= Multiply and assign var a=10; a=20; Now a = 200

/= Divide and assign var a=10; a/=2; Now a = 5

%= Modulus and assign var a=10; a%=2; Now a = 0

JavaScript Special Operators

The following operators are known as JavaScript special operators.

Operator Description

(?:) Conditional Operator returns value based on the condition. It is

like if-else.

, Comma Operator allows multiple expressions to be evaluated as

single statement.

delete Delete Operator deletes a property from the object.

in In Operator checks if object has the given property

instance

of

checks if the object is an instance of given type

new creates an instance (object)

type of checks the type of object.

void it discards the expression's return value.

yield checks what is returned in a generator by the generator's

iterator.

JavaScript If-else

The JavaScript if-else statement is used to execute the code whether condition is true
or false. There are three forms of if statement in JavaScript.

1. If Statement

2. If else statement

3. if else if statement

JavaScript If statement

It evaluates the content only if expression is true. The signature of JavaScript if

statement is given below.

if(expression){

//content to be evaluated

}

<script>

var a=20;

if(a>10){

document.write("value of a is greater than 10");

}

</script>

JavaScript If...else Statement

It evaluates the content whether condition is true of false. The syntax of JavaScript if-

else statement is given below.

if(expression){

//content to be evaluated if condition is true

}

else{

//content to be evaluated if condition is false

}

<script>

var a=20;

if(a%2==0){

document.write("a is even number");

}

else{

document.write("a is odd number");

}

</script>

JavaScript If...else if statement

It evaluates the content only if expression is true from several expressions. The

signature of JavaScript if else if statement is given below.

if(expression1){

//content to be evaluated if expression1 is true

}

else if(expression2){

//content to be evaluated if expression2 is true

}

else if(expression3){

//content to be evaluated if expression3 is true

}

else{

//content to be evaluated if no expression is true

}

Let’s see the simple example of if else if statement in javascript.

<script>

var a=20;

if(a==10){

document.write("a is equal to 10");

}

else if(a==15){

document.write("a is equal to 15");

}

else if(a==20){

document.write("a is equal to 20");

}

else{

document.write("a is not equal to 10, 15 or 20");

}

</script>

JavaScript Switch

The JavaScript switch statement is used to execute one code from multiple
expressions. It is just like else if statement that we have learned in previous page. But

it is convenient than if..else..if because it can be used with numbers, characters etc.

The signature of JavaScript switch statement is given below.

1. switch(expression){

2. case value1:

3. code to be executed;

4. break;

5. case value2:

6. code to be executed;

7. break;

8.

9.

10. default:

11. code to be executed if above values are not matched;

12. }

Let’s see the simple example of switch statement in javascript.

1. <script>

2. var grade='B';

3. var result;

4. switch(grade){

5. case 'A':

6. result="A Grade";

7. break;

8. case 'B':

9. result="B Grade";

10. break;

11. case 'C':

12. result="C Grade";

13. break;

14. default:

15. result="No Grade";

16. }

17. document.write(result);

18. </script>

JavaScript Loops

The JavaScript loops are used to iterate the piece of code using for, while, do while or

for-in loops. It makes the code compact. It is mostly used in array.

There are four types of loops in JavaScript.

1. for loop

2. while loop

3. do-while loop

4. for-in loop

1) JavaScript For loop

The JavaScript for loop iterates the elements for the fixed number of times. It should

be used if number of iteration is known. The syntax of for loop is given below.

1. for (initialization; condition; increment)

2. {

3. code to be executed

4. }

Example

1. <script>

2. for (i=1; i<=5; i++)

3. {

4. document.write(i + "
")

5. }

6. </script>

2) JavaScript while loop

The JavaScript while loop iterates the elements for the infinite number of times. It

should be used if number of iteration is not known. The syntax of while loop is given

below.

1. while (condition)

2. {

3. code to be executed

4. }

Let’s see the simple example of while loop in javascript.

1. <script>

2. var i=11;

3. while (i<=15)

4. {

5. document.write(i + "
");

6. i++;

7. }

8. </script>

3) JavaScript do while loop

The JavaScript do while loop iterates the elements for the infinite number of times like

while loop. But, code is executed at least once whether condition is true or false. The

syntax of do while loop is given below.

1. do{

2. code to be executed

3. }while (condition);

Let’s see the simple example of do while loop in javascript.

1. <script>

2. var i=21;

3. do{

4. document.write(i + "
");

5. i++;

6. }while (i<=25);

7. </script>

JavaScript Functions

JavaScript functions are used to perform operations. We can call JavaScript function

many times to reuse the code.

Advantage of JavaScript function

There are mainly two advantages of JavaScript functions.

1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don’t need to write many lines

of code each time to perform a common task.

JavaScript Function Syntax

The syntax of declaring function is given below.

1. function functionName([arg1, arg2, ...argN]){

2. //code to be executed

3. }

Let’s see the simple example of function in JavaScript that does not has arguments.

1. <script>

2. function msg(){

3. alert("hello! this is message");

4. }

5. </script>

6. <input type="button" onclick="msg()" value="call function"/>

JavaScript Function Arguments

We can call function by passing arguments. Let’s see the example of function that has

one argument.

1. <script>

2. function getcube(number){

3. alert(number*number*number);

4. }

5. </script>

6. <form>

7. <input type="button" value="click" onclick="getcube(4)"/>

8. </form>

Function with Return Value

We can call function that returns a value and use it in our program. Let’s see the

example of function that returns value.

1. <script>

2. function getInfo(){

3. return "hello javatpoint! How r u?";

4. }

5. </script>

6. <script>

7. document.write(getInfo());

8. </script>

JavaScript Function Object

In JavaScript, the purpose of Function constructor is to create a new Function object. It

executes the code globally. However, if we call the constructor directly, a function is

created dynamically but in an unsecured way.

Syntax

1. new Function ([arg1[, arg2[,argn]],] functionBody)

Parameter

arg1, arg2, , argn - It represents the argument used by function.

functionBody - It represents the function definition.

JavaScript Function Methods

Let's see function methods with description.

Method Description

apply() It is used to call a function contains this value and a single array

of arguments.

bind() It is used to create a new function.

call() It is used to call a function contains this value and an argument

list.

toString() It returns the result in a form of a string.

JavaScript Function Object Examples

Example 1

Let's see an example to display the sum of given numbers.

1. <script>

2. var add=new Function("num1","num2","return num1+num2");

3. document.writeln(add(2,5));

4. </script>

Example 2

Let's see an example to display the power of provided value.

1. <script>

2. var pow=new Function("num1","num2","return Math.pow(num1,num2)");

3. document.writeln(pow(2,3));

4. </script>

JavaScript Objects

A javaScript object is an entity having state and behavior (properties and method). For

example: car, pen, bike, chair, glass, keyboard, monitor etc.

JavaScript is an object-based language. Everything is an object in JavaScript.

JavaScript is template based not class based. Here, we don't create class to get the

object. But, we direct create objects.

Creating Objects in JavaScript

There are 3 ways to create objects.

1. By object literal

2. By creating instance of Object directly (using new keyword)

3. By using an object constructor (using new keyword)

1) JavaScript Object by object literal

The syntax of creating object using object literal is given below:

1. object={property1:value1,property2:value2.....propertyN:valueN}

As you can see, property and value is separated by : (colon).

Let’s see the simple example of creating object in JavaScript.

1. <script>

2. emp={id:102,name:"Shyam Kumar",salary:40000}

3. document.write(emp.id+" "+emp.name+" "+emp.salary);

4. </script>

2) By creating instance of Object

The syntax of creating object directly is given below:

1. var objectname=new Object();

Let’s see the example of creating object directly.

1. <script>

2. var emp=new Object();

3. emp.id=101;

4. emp.name="Ravi Malik";

5. emp.salary=50000;

6. document.write(emp.id+" "+emp.name+" "+emp.salary);

7. </script>

Test it Now

Output of the above example

101 Ravi 50000

3) By using an Object constructor

Here, you need to create function with arguments. Each argument value can be

assigned in the current object by using this keyword.

The this keyword refers to the current object.

The example of creating object by object constructor is given below.

1. <script>

2. function emp(id,name,salary){

3. this.id=id;

4. this.name=name;

5. this.salary=salary;

6. }

7. e=new emp(103,"Vimal Jaiswal",30000);

8. document.write(e.id+" "+e.name+" "+e.salary);

9. </script>

Defining method in JavaScript Object

We can define method in JavaScript object. But before defining method, we need to add

property in the function with same name as method.

The example of defining method in object is given below.

1. <script>

2. function emp(id,name,salary){

3. this.id=id;

4. this.name=name;

5. this.salary=salary;

6.

7. this.changeSalary=changeSalary;

8. function changeSalary(otherSalary){

9. this.salary=otherSalary;

10. }

11. }

12. e=new emp(103,"Sonoo Jaiswal",30000);

13. document.write(e.id+" "+e.name+" "+e.salary);

14. e.changeSalary(45000);

15. document.write("
"+e.id+" "+e.name+" "+e.salary);

16. </script>

S.No Methods Description

1 Object.assign() This method is used to copy

enumerable and own

properties from a source object

to a target object

2 Object.create() This method is used to create a

new object with the specified

prototype object and

properties.

3 Object.defineProperty() This method is used to describe

some behavioral attributes of

the property.

4 Object.defineProperties() This method is used to create

or configure multiple object

properties.

5 Object.entries() This method returns an array

with arrays of the key, value

pairs.

6 Object.freeze() This method prevents existing

properties from being removed.

7 Object.getOwnPropertyDescriptor() This method returns a property

descriptor for the specified

property of the specified object.

8 Object.getOwnPropertyDescriptors() This method returns all own

property descriptors of a given

object.

9 Object.getOwnPropertyNames() This method returns an array of

all properties (enumerable or

not) found.

10 Object.getOwnPropertySymbols() This method returns an array of

all own symbol key properties.

11 Object.getPrototypeOf() This method returns the

prototype of the specified

object.

12 Object.is() This method determines

whether two values are the

same value.

13 Object.isExtensible() This method determines if an

object is extensible

14 Object.isFrozen() This method determines if an

object was frozen.

15 Object.isSealed() This method determines if an

object is sealed.

16 Object.keys() This method returns an array of

a given object's own property

names.

17 Object.preventExtensions() This method is used to prevent

any extensions of an object.

18 Object.seal() This method prevents new

properties from being added

and marks all existing

properties as non-configurable.

19 Object.setPrototypeOf() This method sets the prototype

of a specified object to another

object.

20 Object.values() This method returns an array of

values.

